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Abstract Nowadays the interest in small satellites large constellations or MicroSats
in formation flying is increasing and, as a consequence, the challenges related to the
Attitude Determination and Control Subsystem are increasing, being related to the
capability to enhance a fine pointing budget and to be able to take into account the
coupling between attitude and orbital dynamics. In this paper, an Attitude Determi-
nation and Control Subsystem simulator will be presented, fundamental to evidence
the fine dynamical coupling in the ZodiArt iSEE mission, by Politecnico di Milano.
The simulator is characterised by a complete disturbances model, including: the
Earth zonal harmonics, the Moon and Sun third body perturbations, solar radiation
pressure, drag and lift. Moreover, compact plots, here called Orbital long-track en-
velope, will be presented, graphically showing the differential gain/loss in altitude
and relative long-track shift obtained performing differential drag, depending on the
manoeuvre epoch, angle of attack and true anomaly.

1 Introduction

Modern spacecrafts are designed with complex shapes and large areas, in order
to accomplish peculiar mission objectives, maintaining a low mass to reduce the
launch cost. Moreover, the possibility to launch clusters of small satellites in for-
mation flying is becoming reality and a precise knowledge of the relative position
among the platforms will be mandatory. As a result, for Earth observation satel-
lites, atmospheric drag and solar radiation pressure become the main actors, driv-
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ing and coupling the orbital dynamics with the attitude one. This is the case of
the ZodiArt iSEE [1] project, a new mission design carried out by Politecnico di
Milano and lead by Prof. Camilla Colombo, whose aim is to launch a set of Mi-
croSat each of them equipped with a reflective balloon, to promote space advertise-
ment during twilight time and to enhance Earth observation during day time. The
challenges related to the dynamics of such a peculiar spacecraft are mostly related
to the attitude determination and control subsystem, since the platform is charac-
terised by high and uncommon, for this class of platforms, disturbances torques and
a complex operative scenario such a constellation orbiting in formation. In the case
of such complex missions the model and simulation of the spacecraft dynamics,
coupled with the perturbed orbital dynamics, become of fundamental importance.
In this paper, an attitude determination and control subsystem simulator build in
Matlab/SimulinkTMwill be presented. Initially it was tested in its dynamically de-
coupled version on the OUFTI-Next 3U CubeSat mission phase A, by the Centre
Spatial de Liége (CSL) and the University of Liége, and then exploited to evidence
the fine coupling between orbital and attitude dynamics in the ZodiArt iSEE mis-
sion. The simulator is characterised by a complete disturbances model, including:
the Earth zonal harmonics, the Moon and Sun third body perturbations, solar radia-
tion pressure, atmospheric drag and lift, capable of providing reliable and accurate
results in terms of actuators and sensors sizing, as well as of mission operation sim-
ulations.
In Section 2 the theoretical description of the attitude-orbit coupled simulator archi-
tecture will be presented and in Section 3, the results regarding the fine coupling
between orbital and attitude dynamics in the ZodiArt mission will be discussed.

2 The Attitude-Orbit Coupled Simulator Architecture

In this paper, three main reference systems will be used: the inertial reference frame,
the non-inertial body-fixed reference frame and the local vertical, local horizontal
reference frame. The first one has its origin in the centre of the Earth, its X-axis is
oriented towards the vernal direction and the Z-axis is pointed towards the North
Pole. The second reference frame instead is a non-inertial frame, centred in the
spacecraft centre of mass and dependent on the platform considered. The last refer-
ence frame is also a non-inertial reference frame whose orthogonal unit vectors are
r̂, ŝ and ŵ, where r̂ is the osculating position vector direction. ŵ, instead, is the unit
vector normal to the osculating orbital plane, in the direction of angular momentum
vector h, the transverse vector ŝ is normal to both r and ŵ and it therefore points in
the direction of the orbiting body’s local horizon, as shown in Figure 1.

The subscript (·)b/n, means a rotation from the inertial reference frame, indicated
by n, to the body-fixed reference frame, indicated by b. ALVLH, is referred to a
rotation with respect to the inertial frame and can be also indicated as (·)l/n. As
a result the following matrix multiplication can generate a rotation from the local
vertical, local horizontal reference frame to body-fixed reference frame, Ab/l:
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Fig. 1 The local vertical, local horizontal r̂ŝŵ frame, [4].

Ab/l = Ab/nAl/n
T (1)

where (·)T is the transpose of the matrix. Eq. 2 represents the transformation of
a vector from the Inertial reference frame to the body-fixed reference frame and can
be generalized to any kind of change of bases.

ab = Ab/nan (2)

The attitude matrices were implemented exploiting the quaternion formulation,
[11]:

Ab/n(q) =

q2
1−q2

2−q2
3 +q2

4 2(q1q2 +q3q4) 2(q1q3−q2q4)
2(q1q2−q3q4) −q2

1 +q2
2−q2

3 +q2
4 2(q2q3 +q1q4)

2(q1q3 +q2q4) 2(q2q3−q1q4) −q2
1−q2

2 +q2
3 +q4

4

 (3)

where the quaternion components shall satisfy the constrain expressed in Eq.4:

q2
1 +q2

2 +q2
3 +q2

4 = 1 (4)
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2.1 Orbit-attitude disturbances

The disturbances model providing the perturbative accelerations and torques which
respectively act on orbit and attitude dynamics are presented in Tab.1 and Tab.2,
reporting also the models used and their references.

Table 1 Perturbative accelerations
Source Model Formulation References

Earth zonal
harmonics

7th order
Legendre

Polynomials

pobl =−∇Φ

Φ(r,ψ) =
µ

r

∞

∑
k=2

Jk

(
R
r

)k

Pk(cosψ)* [4]

Sun and
Moon third
body effect

Restricted
Circular 3 Body

Problem
pRC3BP = µ2

(
r21

r3
21
− r2

r3
2

)
** [4]

Atmospheric
drag and lift

Cannonball
model

pdrag =−
1
2

ρ(h)Cd
Ad

m
vrel||vrel||***

plift =
1
2

ρ(h)Cl
Ad

m
vrel× (vrel×n)
||vrel× (vrel×n)||

||vrel||2
[4] [10]

Solar
radiation
pressure

Flat plate model pSRP =−PSR

m
CrAsŜ**** [4]

* with ψ = tan−1
√

x2+y2

z , where x, y and z are written in the Earth centred fixed reference
frame and µ is the Earth planetary constant. Jk are the zonal harmonics of the planet, R is its
equatorial radius (R/r < 1), and Pk are the Legendre polynomials: Pk(x) = 1

2kk!
d

dxk (x2−1)k.
** r2 and r2 are respectively the second body (Moon or Sun) position vector and the distance
from the center of the main attractor, the Earth, while r21 and r21 are respectively the sec-
ond body position vector and the distance from the spacecraft. The second body planetary
constant is indicated with µ2.
*** where: ρ(h) is atmospheric density model, dependent on altitude h; Cd is the drag coeffi-
cient (Both for OUFTI-Next CubeSat and ZodiArt platform, it was considered equal to 2.2,
respectively from [6] and from extrapolation of data by [8]); Ad is the platform surface ex-
posed to the relative wind; vrel = v−vatm is the wind relative velocity, obtained as vectorial
difference between the spacecraft velocity and the atmospheric velocity vector, vatm, both
in the Inertial reference system. The lift coefficient was obtained from Cl = 2sin(α)sin(α),
under the specular reflection assumption above 800 km, [14], where α is the bus angle of
attack. The model used for atmospheric density is an exponential model reported in [5]:
ρ = ρ0exp

[
− h−h0

H

]
, where ρ0 is reference density, h0 the reference altitude and H is the

scale height.
**** PSR is the solar radiation pressure, whose value is 4.56× 10−6 N/m2 (4.56 µPa); m
is the mass of the spacecraft; Cr is the reflective coefficient, whose value spans between 1
(black body) and 2 (ideal reflector) for a flat surface, while it is always 1 for a sphere, [7];
Ŝ is the satellite-Sun unit vector in the inertial reference frame. To simulate more precisely
this effect, a cylindrical eclipse model was implemented, as presented in [5].
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Table 2 Perturbative torques

Source Model Formulation References

Geomagnetic
field

Magnetic field
model by

MatlabTM build-
in function

wrldmagm.m

Bb = Ab/nBn

Tmagnetic = m×Bb
* [6]

Gravity
gradient Integral torque

Tgravity =
3µ

r5

∫
M

(rb · r)(rb× r)dm =

=−3µ

R3

(I3− I2)r̂y r̂z
(I1− I3)r̂x r̂z
(I2− I1)r̂x r̂y

**

[4]

Atmospheric
drag

Flat plate
model Tdrag =

− 1
2 ρ(h)Cdv2

rel
vrel
||vrel||

N
∑

i=1
rcp,i× (ni

vrel
||vrel||

)Ai
***

(ni
vrel
||vrel||

)> 0
[9]

Solar
radiation
pressure

Flat plate
model

FSRP = PSRAs
[
ρa(Ŝ ·n)+2ρs(Ŝ ·n)2 ·n+

2
3

ρd(Ŝ ·n)
]

TSRP =


N
∑

i=1
rcp, i×FSRPi

(Ŝ ·n)> 0

****
[9]

* Bb and Bn are respectively the magnetic field vector in body and inertial reference frame, while m
is the platform internal magnetic induction.
** where M is the spacecraft total mass, r is the satellite osculating position vector and rb is the
vector connecting its centre of mass to the infinitesimal cube of mass dm. It is possible to express
the torque in function of the position unit vector r̂ and the spacecraft inertias along the principal
axes, I1,2,3.
*** To obtain the overall torque vector acting on the spacecraft, pdrag is multiplied by the spacecraft
mass; then, the cross-product between the resulting force and the vector connecting the centre of
mass and the assumed centre of pressure, rcp, is performed. Since its position is uncertain or depen-
dent on time, a 10% error was considered. Obviously, if the product between the surface’s normal
and the relative velocity is less than 0, the resulting torque is null. N is the number of spacecraft
surfaces and ni the normal to the surface i.
**** where: n is the surface normal vector; ρa, ρd and ρs are the surface absorption, diffusive and
scattering coefficients respectively. As for the drag, in order to obtain the overall torque, a multipli-
cation times the arm is required and, as before, a 10% error was considered in the position of the
centers of pressure on the N platform surfaces.

2.2 Sensors and attitude determination algorithm

The sensors model and attitude determination algorithm implemented in the simu-
lator introduce noises and measurement errors in the integrated states, to simulate
the sensors’ accuracy effect and then to reconstruct the state, thanks to the determi-
nation algorithm. Firstly the sensors were modeled and then an Unscented Kalman
filter was implemented, selected because, differently from the Extended Kalman
filter, it does not rely on the system linearisation, but on unscented transformations.
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2.3 Control

The control law selected for the simulator is a Proportional and Derivative law (PD)
driving the dynamics of 3 reaction wheels oriented as the spacecraft principal axes
(configuration matrix equal to the identity matrix: A = I3x3). The Integrative term of
a classic PID controller was discarded in order to speed up the code, since no bene-
ficial effect from the controllability point of view was evidenced once implemented.
According to the stability theory of non linear systems [11], the control law of a PD
controller shall be based on a Lyapunov function, Γ (x), dependent on the state x
and based on the kinetic energy related to the Euler system of equations, Eqs.16 to
18, which represent the spacecraft attitude dynamics.

Γ (ω,q) =
1
2
(I1ω

2
b1 + I2ω

2
b2 + I3ω

2
b3)+ γ(q) (5)

In order to assure Lyapunov stability the following relations have to be satisfied:

• Γ (x)> 0, ∀ x 6= xeq
• Γ (x) = 0, for x = xeq
• Γ̇ (x)≤ 0

where xeq is an equilibrium point, in this particular case characterised by ωb = ωb,d
and qe = [0 0 0 1]T . In particular:

• ωb and ωb,d respectively, the actual and target spacecraft angular velocities.
• qe is the error quaternion between the actual attitude matrix, Ab/n, and the desired

one, Ad, transformed in quaternions.

In order to find the error quaternion to be driven to zero, qe, the following steps are
requested:

1. Transform the Ad matrix in control quaternion: qc.
2. Compute the error between the actual quaternion q and the control one qc, ex-

ploiting the quaternion multiplication:

qe = (qc)
−1⊗q =


q4c q3c −q2c −q1c
−q3c q4c q1c −q2c
q2c −q1c q4c −q3c
q1c q2c q3c q4c

q (6)

Where, if qc = [0 0 0 1]T , it means that qe = q.

For the simulator implemented, the method to represent the reference frame are the
quaternions and, as a consequence, it was selected a Lyapunov function based on
the scalar number of the error quaternion, qe,4:

γ(qe,4) = 1−q2
e,4 (7)
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This particular law was selected since it is immune to unwinding, which is a
typical issue, when quaternions are exploited [11]. The square in the law has the
role to make the Lyapunov function independent from the sign of qe,4

Once the control law is selected, the control torque u will be:

u = Kp
∂γ

∂qe,4
q(1,2,3)+Kd(ωb,d−ωb) (8)

u =−2Kpqe,4qe(1,2,3)+Kd(ωb,d−ωb) (9)

where Kp and Kd are respectively the proportional and derivative constants, both
positive. They will be obtained through single and double objective optimisations,
depending on the mission and on the single phase.

2.4 The mathematical model

The whole set of attitude-orbit coupled differential equations are here reported,
where Ii are the spacecraft inertias along the principal axis (indicated with sub-
scripts 1, 2, 3), r, the osculating position vector magnitude, u the control torque, d
the disturbances torque, A the reaction wheels configuration matrix. In particular,
the orbital dynamics was coupled through the perturbative acceleration induced by
atmospheric drag, lift and solar radiation pressure. Gauss planetary equations [4],
Eqs.10 to 15, drive the orbital dynamics, providing 6 states: the orbital momentum
hm, the eccentricity e, the right ascension of the ascending node Ω , the anomaly
of the perigee ω and the true anomaly θ . Then, the attitude dynamics is driven by
the Euler equations, Eqs.16 to 18, the quaternion integration, Eq.19, and the reac-
tion wheels momenta equation, Eq.20, as reported in [11] and providing 10 states:
the three components of the angular velocity vector ωb, the four components of the
quaternion q and the reaction wheels momenta three components hr.

ḣm = rps (10)

ė =
hm

µ
sinθ pr +

1
µhm

[(h2
m +µr)cosθ +µer]ps (11)

θ̇ =
hm

r2 +
1

ehm

[
h2

m

µ
cosθ pr− (r+

h2
m

µ
)sinθ ps

]
(12)

Ω̇ =
r

hmsin i
sin(ω +θ)pw (13)

i̇ =
r

hm
cos(ω +θ)pw (14)

ω̇ =− 1
eh

[
h2

m

µ
cosθ pr− (r+

h2
m

µ
)sinθ ps

]
− rsin(ω +θ)

hmtan i
pw (15)
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ω̇b1 =
I2− I3

I1
ωb2ωb3 +

u1 +d1

I1
(16)

ω̇b2 =
I3− I1

I2
ωb1ωb3 +

u2 +d2

I2
(17)

ω̇b3 =
I1− I2

I3
ωb2ωb1 +

u3 +d3

I3
(18)

q̇ =
1
2


0 ωb3 −ωb2 ωb1
−ωb3 0 ωb1 ωb2
ωb2 −ωb1 0 ωb3
−ωb1 −ωb2 −ωb3 0

q (19)

ḣr = A−1(Ahr×ωb−u) (20)

The perturbative vector p is the sum of the perturbative accelerations presented in
Section 2.1 and decomposed in the local vertical, local horizontal reference frame.
The accelerations due to the lift, drag and solar radiation pressure depend on the
cross surfaces exposed to the atmospheric and solar wind, as shown in Section 2.1,
function of the spacecraft’s attitude through the exposed surfaces normal unit vec-
tors ni and this new dependency couples the orbital dynamics with the attitude one.
This is clearly visible in, Eqs.21 to 23, where, in particular in the first two equations,

0≤ ni ·
vrel

||vrel||
≤ 1

identifies the portion of cross surfaces exposed to the atmospheric wind, when mul-
tiplying the exposed surfaces Ad,i, while in the last one, the scaling factor for As,i is
(Ŝ ·ni). The number of surfaces characterising the spacecraft is indicated as N.

pdrag =−
1
2

ρ(h)
Cd

m

N

∑
i

Ad,i

(
ni ·

vrel

||vrel||

)
vrel||vrel|| (21)

plift =
1
2

ρ(h)
Cl

m

N

∑
i

Ad,i

(
ni ·

vrel

||vrel||

)
vrel× (vrel×ni)

||vrel× (vrel×ni)||
||vrel||2 (22)

psrp =
PSR

m

N

∑
i

As,i
[
ρa(Ŝ ·ni)+2ρs(Ŝ ·ni)

2 ·n+
2
3

ρd(Ŝ ·ni)
]

(23)

In conclusion, there are 16 first order differential equations and, as a consequence,
16 states to be integrated.

3 Application to the ZodiArt iSEE Mission

The Global Sustainable Development Goals [12] are 17 objectives addressing the
global challenges such as poverty, inequality, climate, environmental degradation,
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prosperity, peace and justice and they are the focus of the ZodiArt iSEE project.
This mission is characterised by a set of MicroSat flying in formation and consti-
tuting an artificial constellation in the sky, easily recognisable from ground. This is
possible thanks to high reflective balloons embarked on the top of platforms. Peo-
ple can interact with the system using a mobile app to prove the fulfilment of the
Global Sustainable Development Goals, obtaining from the constellation a picture
of the surroundings, when the formation will pass above the user. The orbit was
identified after a trade-off analysis presented in [1] and [2], providing good visibil-
ity from the most important cities of the world during the twilight. The constellation
will generally point the Nadir direction, performing Earth observation. In this sec-
tion, the dynamics of the platform will be discussed in different perturbed scenarios,
characterised by the Earth zonal harmonics, the Moon and Sun third body perturba-
tions, solar radiation pressure, drag and lift effects, with the aim to build an orbital
long-track envelope, useful to plan attitude manoeuvres, capable of performing fine
relative positioning in the context of formation flying.
With respect to a reference configuration, the platform exposing the maximum sur-
face to the atmospheric and solar wind lowers the orbit semi-major axis, due to
the resulting increase of the drag and solar radiation pressure, while the one expos-
ing the minimum area lowers it. According to elementary orbital dynamics, if two
bodies are orbiting with different altitudes around the same attractor, they will ex-
perience a long-track drift, proportional to the difference in altitude. In particular
the body characterised by an higher orbit will shift in the backward direction with
respect to the other body and viceversa.
Performing differential drag/lift, means that the satellite will be exposed to the rela-
tive atmospheric wind, in order to achieve a desired long-track position and a certain
altitude with respect to an other orbiting body, which, in this case, is another satellite
of the constellation. Nevertheless, the same concept can be applied to solar radiation
pressure.

3.1 Differential drag/lift

Usually in literature the most exploited natural perturbation to control a spacecraft
is the atmospheric drag only, as reported for instance in [13]. In this paper both lift
and drag were considered and their effects evaluated performing many simulations,
varying: the initial epoch, spanning from the 6th of December 2018 to the 21st of
November 2019, with a time interval of 15 days, and the cross exposed area, span-
ning from 0◦ to 90◦ the bus inclination with respect to the velocity vector, since the
balloon exposed surface is always the same. This was performed with respect to a
reference configuration attitude, inclined of 45◦, over one orbital period. The results
are collected in Figure 2, that represents the Orbital long-track envelope, show-
ing the differential height and shift achieved performing a differential drag/lift ma-
noeuvre, under the effect of all the previously mentioned perturbances, at different
epochs, in function of the platform angle of attack and given the initial true anomaly.
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Figure 2 also evidences, as expected, that differential drag/lift is independent on the

Fig. 2 Orbital long-track envelope related to drag/lift effects only.

initial epoch. Moreover, the gain in altitude, and the consequent backward shift, are
higher with respect to the altitude loss and advancing shift. This is due to the fact
that, in the first case, the dynamics is evolving in the same direction of drag, while
in the second case it is counteracted by the atmospheric wind.
The increase/decrease in altitude after one period is quite small compared to the one
achievable at lower orbits, with solar sails, but it can be still exploited, especially if
the differential drag manoeuvre lasts longer.

3.2 Solar radiation pressure

Solar radiation pressure effect is strictly related to the Sun position with respect to
the orbital plane, resulting in an high dependence on the initial epoch. The very same
set of simulations were performed also in the case of only solar radiation pressure
effect, resulting in a more complex dynamics, due to the fact that the exposed surface
orientation is not optimised to point the Sun, but it is oriented almost towards the
relative atmospheric wind. The results achieved are shown in Figure 3. It is possible
to notice that, close to the spring and autumn equinoxes, the effects of solar radiation
pressure are the lowest, since the Sun is almost orthogonal to the orbital plane, acting
mostly on the cross-track orbital evolution, rather than the long-track one.
However, the most interesting effect that the plot evidences, is that the gain/loss
in altitude, and correspondent shift, experienced close to the summer solstice are
not the same evidenced during the winter solstice. Close to these two dates, the
orbit is half in light and half in eclipse, with the Sun illuminating one of the two
orbital semi-circumferences depending on the date considered and, according to
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Fig. 3 Orbital long-track envelope related to solar radiation pressure effect only. The spacecraft,
at the beginning of the manoeuvre, is characterised by declination almost null in eclipse.

this scenario, the spacecraft dynamics should be the same. Nevertheless, what is
changing is the illumination condition of the satellite when the manoeuvre starts: in
the case reported in Figure 3, during the summer solstice, ZodiArt platform begins
its manoeuvre in eclipse, with declination almost null, meaning that, after less than
a quarter of orbit, it will start to experience solar radiation pressure, accelerating
while covering the illuminated part of orbit, and finally continuing to slightly move
in the direction of perturbation once entered in eclipse, due to the inertia acquired.
During the winter solstice, on the contrary, the spacecraft is characterised by almost
null declination but it is in Sun-light, meaning that the perturbative acceleration will
affect the spacecraft for slightly more than a quarter of orbit, then it will enter in
eclipse and finally it will experience again the solar wind pressure. This means that,
in the second case, the platform can not continuously accelerate in the illuminated
half of orbit, resulting in a reduced gain/loss of altitude. The proof of what just
discussed can be find varying the initial true anomaly, as shown in Figure 4: the
results are reported in Figure 5.

In particular:

• At θ0 = 90◦, the 21st of June 2019, the platform starts the manoeuvre just at the
end of the eclipse, maximising the acceleration due to solar radiation pressure
and, as a result, the deepest peak is reached.

• At θ0 = 180◦, the dynamics is exactly the opposite of the one shown in Figure
3, since the spacecraft has declination almost null, but starts the manoeuvre 180◦

after on orbit.

• At θ0 = 270◦, the dynamics is the opposite to the θ0 = 90◦ case, since the space-
craft can exploit the overall perturbative acceleration only during the winter sol-
stice.
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Fig. 4 Orbit and platform Sun exposition depending on θ0 and date.

Fig. 5 Orbital long-track envelope related to solar radiation pressure effect only at different initial
true anomalies, θ0.

3.3 Solar radiation pressure and drag/lift effects

It was shown that solar radiation pressure is the perturbative acceleration that mostly
affect the differential dynamics, but in the case of equinoxes, when the Sun direction
is almost orthogonal to the orbital plane, differential drag/lift are the main actors
rising and lowering the altitude. In Figure 6, the cumulative effects of solar radiation
pressure and drag/lift are reported referred to null initial true anomaly. It is possible
to appreciate that, in correspondence of equinoxes, the gain and loss in altitude are
the same achievable with differential drag only, while in the remaining periods of the
year, the solar radiation pressure is the driving perturbation. In the case of different
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Fig. 6 Orbital long-track envelope related to solar radiation pressure and lift/drag effects. Initial
true anomaly, θ0

initial true anomalies, the same trend evidenced with the solar radiation pressure
long-track envelopes is obtained.

3.4 Long-term differential drag

It was demonstrated that, during equinoxes, differential drag can be exploited, in-
dependently from solar radiation pressure, to control the spacecraft. However, the
differential height and shift acquired are quite small compared to the ones achievable
at lower orbits and equipped with solar sails. For this reason, long-term differential
drag/lift manoeuvres can be inspected to increase the effects of these perturbation.
To test one of these manoeuvres, a reference scenario was selected: three simula-
tions, with the same initial condition but the initial orientation with respect to the
velocity vector (q0), were performed over 10 orbital periods with initial epoch at the
spring equinox. In particular:

• The reference configuration: tilted of 45◦ with respect to the velocity vector.
• The advancing configuration: characterised by the maximum exposed surface,

which will lower the altitude and shift in the same direction of velocity vector.
• The receding configuration: characterised by the minimum surface exposed,

which will rise the altitude and shift in the opposite direction of velocity vec-
tor.

Together with solar radiation pressure and drag/lift, also the Earth oblateness and
the Moon/Sun third body perturbation were considered. The simulations reported a
gain in altitude of 0.29 m with a backward shift of −12.6 m and a loss in altitude of
−0.12 m with a frontward shift of 3.9 m.
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4 Conclusions

Thanks to the work done on the ZodiArt iSEE project it was possible to test the
attitude-orbit coupled simulator, characterised by the presence of all the major dis-
turbances experienced on orbit and capable to handle also the low and fine coupling
between attitude and orbital dynamics. The tool developed can provide Orbital long-
track envelopes, representing the differential height and shift achieved performing a
differential drag/lift manoeuvre under the effect of all the previously mentioned per-
turbances, at different epochs, in function of the platform angle of attack and given
the initial true anomaly. Finally, a simulation of a long-term manoeuvre, lasting 10
orbital periods, was presented. The analyses performed can be easily generalised to
any kind of spacecraft and orbit.
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Glossary

A Constant reaction wheels configuration matrix.

Ab/l Rotation matrix from local to body-fixed frame.

Ab/n Rotation matrix from inertial to body-fixed frame.

Ad Area exposed to the atmospheric wind.

As Area exposed to the Sun radiation.

Bb Magnetic field vector in body fixed frame from magnetometers.

Bn Magnetic field vector in inertial frame.

Cd Hypersonic drag coefficient.

Cl Hypersonic lift coefficient coefficient.

Cr Reflective coefficient.

Fdrag Drag force.

Jk Zonal harmonics term.

Kp Proportional constant for PD controller.

Kd Derivative constant for PD controller.

Pk Legendre polynomial term.

PSR Solar radiation pressure.

Ŝ Satellite-Sun unit direction in inertial reference frame.

Tdrag Torque due to drag.

TSRP Solar radiation pressure resulting torque.

Tmagnetic Torque due to Earth magnetic field interaction.

Tgravity Torque due to gravity gradient.
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16 Glossary

V Earth magnetic field potential.

a Semi-major axis.

d Disturbances torque.

e Eccentricity.

h Height.

h0 Reference height.

hm Angular momentum vector in inertial reference frame.

hr Reaction wheels angular momentum.

i Inclination.

m Mass.

m Residual dipole moment.

n Normal vector.

p Perturbative vector in inertial reference frame.

pdrag Perturbative vector due to atmospheric drag in inertial reference frame.

pobl Perturbative vector due to Earth oblateness in inertial reference frame.

pRC3BP Perturbative vector due to third body perturbation in inertial reference
frame.

pSRP Perturbative vector due to solar radiation pressure in inertial reference frame.

q Quaternion.

qc Control quaternion.

qe Quaternion error.

r Osculating position vector in inertial reference frame.

rb Vector connecting the spacecraft centre of mass to the infinitesimal cube of mass
dm.

rcp Vector connecting the spacecraft centre of mass to the centre of pressure.

v Velocity vector in inertial reference frame.

vatm Earth atmospheric velocity vector.

vrel Relative velocity vector.

t time.



Glossary 17

u Control torque.

Γ Lyapunov function.

α Angle of attack.

γ Lyapunov function term dependent on the quaternion.

θ True anomaly.

µ Planetary constant.

Φ Perturbation of the gravitational potential due to planet oblateness.

ρ Atmospheric density.

ρa Surface absorption coefficient.

ρd Surface diffusive coefficient.

ρs Surface scattering coefficient.

ψ Polar angle.

ω Anomaly of the perigee.

ωb Angular velocity vector.

ωb,d Desired angular velocity vector.


