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Abstract This paper addresses the attitude control problem for multirotor Un-
manned Aerial Vehicles with the aim of comparing two nonlinear control archi-
tectures. The first controller is based on a nonlinear cascade design with a P/PID-
like structure while the second one is a PI-like nonlinear controller that has been
proposed to tackle the attitude tracking problem for rigid bodies. First, a general
model for the attitude dynamics of multirotor UAVs is recalled. Then, the consid-
ered controllers are reviewed on both theoretical and practical aspects, focusing on
their stabilizing properties, implementation and tuning issues. Finally, the control
laws are systematically tuned by applying structured H∞ synthesis to the linearized
closed-loop dynamics obtained by referring to an identified single axis model of a
lightweight quadrotor.

1 Introduction

Attitude control in multirotor Unmanned Aerial Vehicles (UAVs) is of fundamental
importance since their flying qualities depend significantly on the performance and
stabilizing properties of their attitude controllers, the design and tuning of which
must be carried out in a sensible way. Depending on the application, requirements
may vary and different modeling and control law design tools have to be considered.
If one is concerned with applications such as inspection, surveillance, mapping,
video and photography then linear modeling and control design methods are suitable
and allow to handle stringent performance requirements in a systematic way. On
the other hand, when considering maneuvers involving extreme changes in attitude,
linear controllers may have significant deficiencies and yield poor performance or,
even worse, fail to stabilize the vehicle.
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For aggressive maneuvering flight, nonlinear models and control design methods
are needed, in particular, to ensure global tracking properties. To this end, minimal
parametrizations of the configuration manifold in which the attitude motion evolves,
namely, SO(3), have to be avoided since no minimal parametrization (like Euler an-
gles) is free of singularities, which is the reason why most attitude controllers pro-
posed in the literature are based on unit quaternions [1, 2, 3] or directly on elements
of SO(3) [4, 5, 6] (geometric controllers). While quaternion-based controllers re-
quire only four parameters to compute attitude errors, they need special care as they
doubly cover SO(3). On the other hand, geometric-based controllers account by de-
sign for topological obstructions of SO(3) and are computationally efficient since
they rely on matrix operations to compute attitude errors. As per the controller archi-
tecture, standard PI control laws, which can be employed only in Euclidean spaces,
have been recently extended to SO(3) and Lie groups in general [7, 8]. By includ-
ing feed-forward terms, perfect tracking of a desired attitude motion can be guaran-
teed under ideal conditions, i.e., when the nominal dynamics is exactly the one of
a rigid body with a perfectly known inertia matrix and only constant disturbances
are present. On the other hand, cascade-based designs have successfully flown on-
board multirotor UAVs and are implemented in popular open-source autopilots [9].
This design exploits the cascade structure of the attitude motion in which the atti-
tude kinematics evolves on a nonlinear manifold but is free of disturbances and in
which the attitude dynamics is nonlinear and affected by disturbances but evolves
on a linear manifold. Although the typical implementation of this design does not
guarantee perfect attitude tracking even in ideal conditions, it is structurally more
robust and has some practical advantages over the PI one.

In this work we first review the dynamical model of a multirotor UAV with copla-
nar propellers and then present in detail a PI-like geometric controller and a geo-
metric version of a standard P/PID control architecture. In the analysis, emphasis is
placed on theoretical as well as practical aspects, specifically implementation and
tuning issues. The tuning phase is particularly challenging for nonlinear control laws
that involve several parameters without a clear understanding of their contribution
on the system response. Typically, gains are tuned on the basis of simple simu-
lation models and then adjusted by trial and error on the real platform. Recently,
a systematic method based on data-driven approaches has been presented to tune
linear attitude controllers for multirotor UAVs [10, 11]. The development of a tun-
ing approach for nonlinear attitude control laws is more challenging and has never
been presented to the best of our knowledge. The approach presented in this work
exploits linearized closed-loop systems obtained by referring to identified dynami-
cal models. Then, structured H∞ [12, 13] is used to tune the controller parameters.
Such approach proved to be of great practical usefulness and has been widely em-
ployed in aerospace applications, in particular on rotorcraft [14, 15, 16, 17], since
it guarantees robustness against model uncertainty and requirements encoded in the
frequency domain can be enforced to achieve tight performance in near hovering
conditions. In the last section of the paper some remarks about the expected perfor-
mance of the two control architectures are reported by analyzing the corresponding
complementary sensitivity functions.
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2 The attitude dynamical model of multirotor UAVs

A multirotor UAV is an aerial vehicle made by a central body and n arms, each
of which carries a propeller group. The propeller groups consist of a motor and a
propeller and are in charge of producing the wrench (force and torque) required
to control the motion of the UAV (Figure 1). The dynamics of the central body
evolves on the product manifold SO(3)×R3, where SO(3) := {R ∈ R3×3 : RT R =
I3,det(R) = 1} denotes the Special Orthogonal group of order three. The con-
figuration of the UAV can be identified with the motion of a body-fixed frame
FB := (OB,{b1,b2,b3}) with respect to a reference frame FI := (OI ,{e1,e2,e3}),
where bi and ei are unit vectors forming orthogonal triads and OB,OI ∈ R3 are the
origins of the body and reference frame, respectively. The position vector from OI
to OB is x ∈ R3, resolved in FI . We assume that the reference frame is an iner-
tial one and, for convenience, that its axes coincide with the standard basis of R3,
i.e., e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). We denote R := [b1 b2 b3 ] ∈ SO(3)
the rotation matrix describing the attitude of the UAV, where bi are the body axes
resolved in FI .

Fig. 1 Example of a multirotor UAV and def-
inition of the frames. Fig. 2 Quadrotor used for the tests.

By referring to the body frame, the attitude motion of a UAV is described by the
following set of equations:

Ṙ = Rω̂ (1)
Jω̇ =−ω× Jω + τc + τe(R,x,ω,v,ωr, ω̇r, t) (2)

where J ∈R3×3
>0 is the inertia matrix with respect to OB, ω ∈R3 is the body angular

velocity, v ∈ R3 is the translational velocity, τc,τe ∈ R3 are the control and distur-
bance torque, respectively, and ωr := (ωr1 , . . . ,ωrn) ∈ (R≥0)

n contains the angular
rates of the propellers. Herein, the hat map ·̂ : R3→ so(3), given by

ω 7→

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 , (3)
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defines an isomorphism between R3 and the vector space of third-order skew-
symmetric matrices, i.e., so(3) := {W ∈ R3×3 : W = −W T}. The corresponding
inverse is the vee map (·)∨ : so(3)→ R3. Given ω̂ ∈ so(3), one has ω̂y = ω × y,
∀y ∈ R3, where × is the cross product.

The control torque delivered by the propellers at OB is given by:

τc :=
n

∑
i=1

xbri × fpi + τpi (4)

where fpi and τpi ∈ R3 are, respectively, the force and torque delivered by the i-th
rotor and xbri ∈R3 is the position vector from the airframe origin to the hub of the i-
th rotor disk, all resolved in FB. In this work we rely on the quadratic aerodynamic
model [18] and assume that the force and torque delivered by the propellers are
orthogonal to the plane described by b1,b2 (coplanar configuration), i.e.,

fpi := k f ω
2
ri

e3 (5)

τpi :=−εikτ ω
2
ri

e3, (6)

where ωri is the angular rate of the i-th rotor, k f ,kτ ∈ R>0 are the thrust and torque
coefficient, respectively, which can be obtained experimentally in static conditions,
and εi ∈ {−1,1} defines the rotation direction of the i-th rotor. Note that this model
is valid when considering small deviations from the hovering condition [18] al-
though it has been successfully used even in highly acrobatic maneuvering, as doc-
umented by several experimental works [5, 19]. By defining

Ti := k f ω
2
ri

i = 1, . . . ,n, (7)

the propeller wrench can be written as fpi = Tie3 and τpi = −εiσTie3, where σ :=
kτ/k f is a positive constant. Then, when assuming that there are sufficiently fast low-
level controllers to track any desired angular rate ωri , (T1, . . . ,Tn) ∈ (R≥0)

n can be
considered as the input for control design. Under the assumption that the rotor hubs
are placed equidistantly from the center of mass, each making an angle γi ∈ [0, 2π)
with respect to b1, the control torque (4) can be written as a map (T1, . . . ,Tn) 7→
τc(T1, . . . ,Tn), given by the following expression:

τc(T1, . . . ,Tn) :=
n

∑
i=1

(
xbri ×Tie3− εiσTie3

)
(8)

where xbri := `Re3(γi)e1, Re3(γi)∈ SO(3) describes a rotation of an angle γi ∈ [0,2π)
about e3 and defines the orientation of the i− th arm frame with respect to FB. Fi-
nally, when referring to the coplanar rotors configuration, the total force is delivered
by the propellers only along the positive direction of the third body axis (b3), ac-
cording to the following map:

Tc(T1, . . . ,Tn) :=
n

∑
i=1

Ti. (9)
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The control thrust Tc := f T
c e3 is provided by a control loop when the position/altitude

flight mode is engaged or directly by the pilot during manual flight. Note that Ti ap-
pears linearly in (8)-(9). Hence, the mapping can be compactly written in matrix
form: [

Tc
τc

]
=


1 · · · 1

`sin(γ1) · · · `sin(γn)
−`cos(γ1) · · · −`cos(γn)
−ε1σ · · · −εnσ


T1

...
Tn

 . (10)

It is worth remarking that since we have employed an approximated model in (5)-
(6), an additional disturbance torque, dependent on the input, should be included in
equation (2) to account for the induced modeling errors. The remaining part of the
external torque τe is related to the aerodynamic interaction of the UAV main body
and arms with air, to the center of mass offset with respect to OB and to inertial and
gyroscopic coupling terms related to the propellers. Therefore, a general model for
the attitude dynamics would be described by:

Jω̇ =−ω× Jω + τc(u)+ τe(R,x,ω,v,u,ωr(u), ω̇r(u), t) (11)

where the input u := (T1, . . . ,Tn) has been introduced for compactness. Note that ωr
and ω̇r depend upon input u and that in general, the exact expression of τe is difficult
to find.

3 The attitude tracking problem

For a sufficiently large thrust, it is always possible to obtain feasible propellers
thrusts Ti (i.e., positives) for any desired torque τc according to (10) [20]. This mo-
tivates the common assumption that the attitude dynamics for a multirotor UAV is
fully actuated. As can be seen from equation (10), the coplanar multirotor UAV
is an underactuated system: no force can be instantaneously delivered in the plane
spanned by b1,b2. For controlling the position of these platforms, the standard ap-
proach exploits the assumed full actuation of the attitude subsystem to stabilize the
position error dynamics. In practice, a control law for τc is designed to tilt the body
vector b3 in the direction of the force required for position tracking. At the same
time the magnitude of the control force Tc is adjusted to match the magnitude of the
required force and then, input u is computed by inverting (10). Therefore, the design
of control laws for attitude tracking becomes a fundamental ingredient to ensure the
stability of the overall system. If one is not interested in position tracking, the fully
actuated rotational dynamics can be exploited to perform arbitrary rotational ma-
neuvers. In this scenario the thrust magnitude is assigned to track a desired altitude
motion or to make (10) always invertible, which is the case of the experiments pre-
sented later on in this work. In both flight conditions, the attitude tracking problem
can be formalized as follows.
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Problem 1. Consider the attitude dynamics in equations (1),(11). Given a trajectory
t 7→ (Rd(t),ωd(t)) ∈ SO(3)×R3, where t 7→ ωd(t) := (RT

d (t)Ṙd(t))∨ is a continu-
ously differentiable and bounded function of time, find a control torque τc such that
(R,ω)→ (Rd ,ωd) as t→ ∞ when assuming that full state information is available.

Recent results [21] in trajectory tracking for underactuated UAVs show that the
attitude dynamics should be made at least asymptotically stable to guarantee asymp-
totic stability of the closed-loop system including the position error dynamics. To
this end, the majority of works on multirotor UAV design control laws either on the
linearized dynamics, to seek high performance and robustness in near hovering con-
ditions, or on the full nonlinear dynamics, simplified by treating as constant or even
by neglecting the disturbance torque, when large attitude maneuvers are planned. In
this work we present two control laws that tackle the attitude tracking problem by
accounting for nonlinearities as well as disturbances. Both control laws are devel-
oped in a geometric setting without resorting to parametrizations of SO(3). The first
design is based on a cascade architecture [22] whereas the second one is a slightly
modified version of the geometric PI-like control law proposed in [7].

3.1 Geometric cascade P/PID-like architecture

The cascade strategy is motivated by the structure of the equations (1), (11) when
treating τe as an exogenous disturbance. Under this assumption, the attitude dynam-
ics (11) is independent from the kinematics one (1). Therefore, the angular veloc-
ity ω can be considered as a virtual input to track the desired attitude t 7→ Rd(t).
Then, the torque τc can be designed according to different control strategies to track
the virtual angular velocity, relying on the full actuation assumption. For instance,
one can pursue a back-stepping or a feedback linearization approach. While back-
stepping requires higher order derivatives [23] of the desired reference and perfect
knowledge of the dynamics for exact tracking, linear control designs can be used
to enforce satisfactory tracking performance as well as good disturbance rejection
capabilities. For the latter case, a popular choice is a PID law, which stands out for
its simplicity, and is the one considered in this work. As mentioned above, in the
cascade strategy the outer loop is in charge of providing a reference angular veloc-
ity to the inner loop. To achieve this, a quaternion based control law was proposed
in [24], together with a switching strategy to handle the unwinding phenomenon.
This law guarantees global tracking (when only the attitude kinematics is consid-
ered) but is discontinuous and may be subjected to chattering [3]. Instead, in this
work we consider a smooth geometric control law that exploits configuration er-
rors directly defined on SO(3). Such control law can only almost globally track
any desired attitude due to the topological obstructions of SO(3) (the set of initial
conditions converging to undesired equilibria is of zero measure, in the sense of
Lebesgue, with respect to the manifold SO(3)×R3). This result, however, is valid
only in ideal conditions without disturbances on the dynamics and does not pose
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difficulties in practice. Moreover, the control law provides a continuous reference to
the inner loop which is a much more desirable property.

In this work the following geometric cascade control law is proposed (see also
Figure 3):

ωv :=−eR(Re) (12)
τc(s) := PI(s)(ωv−ω)−D(s)ω, (13)

where Re := RT
d R∈ SO(3), eR := 1

2

(
KRRe−RT

e KR
)∨ is the left trivialized deriva-

tive of Ψ(Re) := 1
2 tr(KR(I − Re)), a continuously differentiable, positive definite

function on SO(3), PI(s) := Kp +Ki
1
s and D(s) := Kd

s
1+ s

N
are transfer functions

on the Laplace domain defining, respectively, a proportional-integral and (filtered)
derivative action. Herein, KR, Kp, Ki and Kd ∈ R3×3 are positive definite diagonal
matrices while N ∈R>0 is the derivative filter constant; Kxi refers to the i-th element
on the diagonal of the generic matrix Kx.

Geometric law

R

PID

ω

Rd ωv τc

Fig. 3 Cascade attitude control loops.

For small attitude errors with respect to hovering, namely, when R ≈ I3 + θ̂ ,
where θ ∈ R3 is a vector containing small angles, or when the attitude motion is
mainly occurring about one axis, the closed-loop system can be approximated as:

sθ = ω (14)
sJω = PI(s)K̃R(θd−θ)−PID(s)ω + τe (15)

in which

K̃R :=


KR2+KR3

2 0 0

0
KR1+KR3

2 0

0 0
KR1+KR2

2

 (16)

and PID(s) :=PI(s)+D(s). The block diagram of the linearized control architecture
is depicted in Figure 4.

Remark 1. The control law (12)-(13) does not solve Problem 1, i.e., it does not guar-
antee perfect tracking, even in ideal conditions when the dynamics evolves accord-
ing to Jω̇ +ω× Jω = τc + τe with τe constant and J perfectly known. Nonetheless,
it can be tuned to achieve tight performance, in particular, when identified models
Gωi(s) from τci to ωi are available and used instead of the simple integrator model
of (15). In this case the inner-closed-loop function (from reference angular rate ωvi
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K̃Ri
Kpi

KIi
s

Kdi
s

1+ s
N

UAV pitch
dynamics

θdi ωvi +

+ −

θi

ωi
−−

τci+

di

+

Fig. 4 Linearized cascade architecture (single axis).

to ωi) reads:

sθi = ωi (17)

ωi

ωvi

=
Gωi(s)PI(s)

1+Gωi(s)PID(s)
= Tωi(s) (18)

and the outer-closed-loop function, also referred to as the complementary sensitivity
function, reads

θi

θdi

=
1
s K̃RiTωi(s)

1+ 1
s K̃RiTωi(s)

= Tθi(s) (19)

and the sensitivity function (which can be interpreted as the closed-loop transfer
function from di to θi, see Figure 4) is:

Sθi(s) = 1−Tθi(s). (20)

At this point, one can either tune the inner loop gains first and then select the gain
K̃Ri , according to the cascade structure in (17)-(18), or directly work with the sen-
sitivity and complementary sensitivity function in equations (20) and (19). In this
work the latter approach has been followed and structured H∞ synthesis has been
used to tune the gains.

3.2 Geometric PI-like architecture

The second law that we consider is inspired by [7]. It is derived by means of Lya-
punov arguments by referring to the dynamics (1), (11) in which the disturbance
torque is assumed to be unknown but constant. Several version of this control law
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have been proposed and experimentally validated [7, 25]. In this paper we propose
the following PI-like geometric control law:

τc :=−eR(Re)−Kω eω −KIeI + JRT
e ω̇d +(RT

e ωd)× JRT
e ωd (21)

ėI := eR(Re)+KωI eω (22)

where eR(Re) is defined as for (12), eω := ω −RT
e ωd and Kω , KI ,KωI ∈ R3×3 are

diagonal positive definite matrices. By exploiting Lyapunov arguments [7], it is pos-
sible to show that there are diagonal gain matrices KR,Kω ,KI ,KωI such that the
closed-loop equilibrium (Re,eω ,eI) = (I3,0,K−1

I τe) of the error dynamics

Ṙe = Reêω (23)

Jėω =−Kω eω − eR(Re)+(Jeω +hRT
e ωd)× eω −KIeI + τe, (24)

ėI = eR(Re)+KωI eω , (25)

where h := 2J− tr(J)I3, is locally exponentially stable. Note that working directly
with (21) is hard during the tuning phase as there is no clear understanding of the
effect of changing the different gains. There is also an unconventional integration
of the angular velocity error in (22), which, contrary to the linear case, is not just
equivalent to increase the proportional gain in (21) unless small attitude errors are
considered. Indeed, when the gyroscopic terms are neglected in (11) and the equa-
tions are linearized around the equilibrium point for Re ≈ I3− θ̂e, eω ≈ 0−ωe

1, the
linearized closed-loop error system can be approximated to yield:

sθe = ωe (26)
sJωe =−Kω ωe− K̃Rθe +KIeI− τe (27)

seI =−K̃Rθe−KωI ωe (28)

in which K̃R is defined as in (16). To determine the local stability behavior of the
closed-loop system, one can refer to the corresponding characteristic polynomial
related to the i-th axis (i = 1,2,3), namely,

s3Ji + s2Kωi + s(K̃Ri +KIiKωIi
)+KIiK̃Ri (29)

in which τe can be neglected since it is an exogenous signal and does not contribute
to the stability of the closed-loop system. The gains of the diagonal matrices are
selected in order to make the polynomial in (29) a Hurwitz polynomial for i= 1,2,3.

A different path is to exploit the knowledge of identified models Gωi , as done for
the cascade architecture, and tune the gains in order to achieve satisfactory perfor-
mance when referring to the sensitivity function from di to θi, given by:

1 Notice that the negative sign in the definition of angular velocity error is introduced to be consis-
tent with the definition of θe = θd −θ and to have an error kinematic equation (26) with the same
sign on both members.
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Sθi(s) =
1

1+ 1
s Tωi(s)Cθi(s)

=
θi

di
(30)

where

Tωi(s) =
Gωi(s)

1+Gωi(s)Cωi(s)
(31)

Cωi(s) = Kωi +
1
s

KIiKωIi
(32)

Cθi(s) = K̃Ri

(
1+

1
s

KIi

)
. (33)

The block diagram of the linearized geometric PI-like architecture is depicted in
Figure 5.

Remark 2. The control torque in equation (21) requires both the desired angular
velocity and acceleration to be implemented. In the position tracking scenario de-
picted in Section 2 this means that the position controller should provide not only
a desired attitude Rd but ωd and ω̇d as well, whose analytical derivation requires
continuously differentiable position trajectories up to the fourth order [21]. This
not only makes the controller structure more complex but has potentially negative
effects when only a roughly estimated inertia matrix is available. Furthermore, in
case the vehicle is manually piloted, the pilot sends commands in terms of desired
angles to the on-board controller and the corresponding angular velocity and ac-
celeration must be somehow computed on-line, unlike the scenario in which both
the attitude and its derivatives are provided, for instance, by a ground control com-
puter. One option is to set ωd , ω̇d = 0, namely, set-point tracking. This, however,
represents a limitation in achieving the desired performance in terms of attitude re-
sponse to reference, resulting in a sluggish response. In practice this work adopts
the approach of [18, 26], where (21) is implemented with good approximation as
τc ≈−eR(Re)−Kω eω−KIeI which does not depend upon the UAV inertia and does
not require the reference ω̇d . Note that when the approximated torque is linearized,
it yields exactly the closed-loop equation (27). Such control law still requires the
desired angular velocity ωd to compute eω , therefore a continuously differentiable
signal with its derivative must be provided to the controller. This issue is addressed
in detail in the next section.

3.3 Reference signal related issues

In Remark 2 it has been pointed out that the geometric PI-like architecture requires
the desired attitude Rd and at least the corresponding angular velocity ωd in the ap-
proximated case which neglects the feed-forward contribution in (21). Following up
on the comments presented above, a smooth trajectory generator is therefore needed
to provide the controllers with that information and to carry out a fair comparison
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K̃Ri

KωIi

Kωi

1
s KIi

UAV attitude
dynamics

s

θdi

ωdi

θei

ωei

+ eIi + +
+

τci

θi

ωi

−

−
di

+

Fig. 5 Linearized geometric PI-like control architecture (single axis).

between the two architectures. The trajectory generator has been implemented on-
board in the form of a filter so that the existing software architecture should not be
modified: the idea is to pass the pilot/computer command through a suitable filter,
so that a continuously differentiable signal and its derivative (at least) can be pro-
vided to the controllers. Since both the controllers are geometric, the filter should
be developed directly on SO(3). To this end, we propose the geometric counterpart
of the Euclidean second-order filter θ̈

f
d = −ω2

n (θ
f

d −θd)−2ξ ωnθ̇
f

d (ωn,ξ ∈ R>0)
which, in transfer function form, this can be written as:[

θ
f

d
ω

f
d

]
=

[
Fθ (s)
sFθ (s)

]
θd = F(s)θd Fθ (s) =

ω2
n

s2 +2ξ ωns+ω2
n
. (34)

Specifically, the following geometric filter has been developed:

Ṙ f
d = R f

d ω̂
f

d (35)

ω̇
f

d =−ω
2
n eR(R f

e )−2ξ ωnω
f

d (36)

where R f
e := RT

d R f
d ∈ SO(3) and eR(·) is defined as (13). It can be verified that (34)

is the linearized version of (35)-(36) for a small attitude motion Rd(t)≈ I3 + θ̂d(t).

4 Tuning

The linearized version of the two control architectures presented in Sections 3.1 and
3.2 respectively were used to carry out tuning of the gains. This allows to resort
to tuning methods for linear systems; in particular, the structured H∞ approach is
considered. The tuned gains are then plugged in the respective nonlinear control
law architectures for validation in the time domain.

In this work, focus was put on the pitch axis of the vehicle. In order to ease the
notation, the subscript i will be dropped, referring to the pitch axis (i.e., i = 2).
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4.1 Hardware set-up

In this work, the quadrotor depicted in Figure 2 was considered; it is a lightweight
custom model with a distance of 160mm between opposite rotor axes and an overall
take-off weight of about 230g. The relevant parameters are reported in Table 1.

Table 1 Main quadrotor parameters.

Variable Value

Frame Config. X
Propellers Gemfan Bullnose 3055 3 blade

Arm length b 80 mm
Take-off weight m 230 g

Motors QAV1306-3100kV brushless
ESC ZTW Spider series 18A

Battery Turnigy nano-tech 950mAh LIPO

The flight control unit is a Pixfalcon board, an open autopilot shield suitable
for remotely controlled vehicles such as multirotors and fixed wing aircraft. It is
equipped with a 3 axes accelerometer, a 3 axes gyroscope, a magnetometer and a
pressure sensor. The firmware running on the Pixfalcon board is the open-source
software PX4 Pro Autopilot. The firmware features attitude and position controllers
and estimators, and has been customized to allow replacing the baseline attitude
controller with a user-defined controller.

4.2 Model identification

A black-box model of the UAV pitch attitude dynamics was identified with the PB-
SID subspace model identification algorithm using closed-loop experimental data
[27] and was used as the basis for control law tuning. The identified model, from
the (adimensionalized) pitch moment input M to the pitch rate output q, is of order
five and contains a time delay. Figure 6 shows the frequency response of the identi-
fied model against the estimate of the non-parametric frequency response function
(computed accounting for the bias introduced by feedback in the closed-loop exper-
iment); the coherence function indicates that the experimental data are valid in the
frequency range [10− 100][rad/s], which is consistent with the expected attitude
control bandwidth. Both the magnitude and phase of the identified model feature
excellent fit to the nonparametric frequency response in this frequency range. The
model was validated against flight data collected in a manually piloted experiment:
Figure 7 shows the measured response (blue line) to the pitch attitude reference sig-
nal (red line), against the simulated closed-loop attitude angle response (black line)
obtained with the identified model, showing a close match to the measured data.
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4.3 Requirements definition

The control requirements for structured H∞ synthesis are stated in the form of
weighting functions in the frequency domain. In particular, weighting functions are
rational, stable, proper transfer functions. Two different requirements were taken
into account:

• performance: the requirement on performance is defined as a weighting function
on the attitude angle sensitivity, i.e., the transfer function from the disturbance
on the pitch angle d to θ (compare with equations (20) and (30) for the cascade
and the geometric PI-like architectures, respectively);

• control moderation: the requirement on control moderation is defined as a weight-
ing function on the control sensitivity, i.e., the transfer function from d to M.

It was decided to characterize performance in terms of disturbance rejection [28,
14] (i.e., breaking the loop in the output), rather than in terms of the response to
the reference input (i.e., breaking the loop in correspondence of the tracking error
signal): indeed, the latter inherently depends both on the feedback and feed-forward
properties of the system, while the former only depends on the feedback regulator.
This approach allows to compare the performance of the two considered control
architectures in terms only of the feedback properties (see also the discussion in
Remark 2).

The weighting function on the sensitivity is defined as:

WS(s) = kS
s+ zS

s+ pS
(37)

where the inverse of the frequency response magnitude
∣∣WS( jω)−1

∣∣ represents an
upper bound on the sensitivity frequency response magnitude |S( jω)|; the param-
eters of the weighting function are chosen so as to enforce a low frequency con-
straint

∣∣WS( j0)−1
∣∣ = KLF , a high frequency constraint

∣∣WS( j∞)−1
∣∣ = KHF , and a

bandwidth constraint
∣∣WS( jωBW )−1

∣∣=−3dB. In particular, ωBW represents the de-
sired sensitivity bandwidth, also referred to as the disturbance rejection bandwidth
(DRB), while KHF represents a constraint on the peak of the sensitivity magnitude,
also referred to as the disturbance rejection peak (DRP) [28].

Two different levels of performance were defined:

• a high-bandwidth requirement (HBW ), representing aggressive performance re-
quirements, with a large bandwidth and allowing for a large sensitivity peak;

• a low-bandwidth requirement (LBW ), featuring a more stringent constraint on the
sensitivity peak, on the other hand trading off a lower bandwidth.

The parameters of the corresponding weighting functions are reported in Table 2.
The control sensitivity weigthing function was chosen as follows:

WR(s) = kR
s+ zR

s+ pR
(38)
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Table 2 Sensitivity weighting function parameters.

ωBW [rad/s] KHF [dB] KLF [dB] kS pS zS

HBW 9 8 -40 0.398 0.122 30.64
LBW 2 3 -40 0.708 0.02445 3.454

with kR = 0.2, pR = 23.26 and zR = 10−4, in order to limit high frequency control
action beyond the actuators’ bandwidth.

4.4 Control law synthesis problem statement

Let ρ be the vector of tunable controller parameters, which for the cascade archi-
tecture is ρ = ρC =

[
KPi ,KIi ,KDi , K̃Ri

]T and for the geometric PI-like architecture is

ρ = ρG =
[
K̃Ri ,Kωi ,KIi ,KωIi

]T
, where i = {1,2,3} indicates respectively the roll,

pitch or yaw axis, and the control law tuning is carried out one axis at a time.
Let S(s,ρ) be the sensitivity function and R(s,ρ) the control sensitivity function,

where the dependence on ρ is made explicit. Let JS(ρ) be the cost function related
to the performance requirement, and let JR(ρ) be the cost function related to the
control moderation requirement:

JS(ρ) = ‖WS(s)S(s,ρ)‖∞
(39)

JR(ρ) = ‖WR(s)R(s,ρ)‖∞
. (40)

The synthesis problem can be stated as an optimization problem:

ρ
∗ = argmin

ρ
JS(ρ) (41)

subject to (42)
JR(ρ)≤ 1 (43)

with ρ∗ being the optimal value of the controller gain vector.

4.5 Numerical results

Three different control law gain sets were obtained for the cascade architecture:

• a high-bandwidth cascade control law, denoted as CH , which is subject to the
HBW performance requirement defined in Section 4.3;

• a low-bandwidth cascade control law, denoted as CL, subject to the LBW perfor-
mance requirement defined in Section 4.3;
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• a low-bandwidth cascade control law with no derivative action in the inner loop,
denoted as CD0

L , which is subject to the same LBW performance requirement as
the CL controller, but with the additional constraint KD = 0.

Numerical optimization was carried out by means of the MATLAB systune
routine. The gain values for the three cascade control laws are shown in Table 3,
along with the achieved sensitivity bandwidth.

Table 3 Cascade control architecture gain values: pitch axis (i = 2).

Gain CH CL CD0
L

KP 0.142 0.187 0.0646
KI 0.287 0.362 0.107
KD 0.00263 0.00344 0
K̃R 12.5 3.30 3.10

ωBW [rad/s] 10 2.98 2.26

Finally, gains for the geometric PI-like architecture were tuned according to the
LBW performance requirement and are stated in Table 4; this control law is de-
noted as GL. Unlike the cascade architecture, it was not possible to obtain a solu-
tion achieving the HBW requirements with the geometric PI-like control architecture,
likely due to the absence of a derivative action on the angular rate.

Table 4 Geometric PI-like control architecture gain values: pitch axis (i = 2).

Gain GL

K̃R 0.264
Kω 0.0757
KI 0.3

KωI 0.0390
ωBW [rad/s] 2.85

Figure 8 shows the sensitivity function magnitude of the system closed in loop
with controllers CL, CD0

L and GL, along with the inverse of the weighting function
associated with the low performance requirement; in all the cases, the optimization
routine is able to meet the constraint. Similar considerations hold true for the case
of the CH controller, not shown for brevity. The effect of the derivative action on
angular rate can be appreciated in that the CL controller achieves a significantly
lower sensitivity magnitude peak with respect to the other two controllers (which
are not provided with angular rate derivative action), and a larger bandwidth with
respect to the required one.

Figure 9 shows the Bode magnitude plot of the complementary sensitivity func-
tion for the four controllers. It can be noticed that the CL and CD0

L controllers achieve
a similar complementary sensitivity magnitude shape, while the CH controller
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achieves higher bandwidth to reference response, as expected; on the other hand, the
complementary sensitivity for the GL controller features a magnitude shape closer
to the high-bandwith CH controller rather than the cascade low-bandwith controllers
CL and CD0

L , despite having been designed for low-bandwidth requirements. It is thus
expected that the GL controller achieves a fast response, though with some oscilla-
tions (due to the presence of a resonance peak). Furthermore, from the phase plot it
can be noticed that GL features the smallest phase lag among the four controllers.

The filter F(s) of equation (34), described in Section 3.3, was appended upstream
the geometric PI-like controller, and the part of filter Fθ (s) related to attitude angle
reference was appended upstream the cascade controller; in this way, a fair compar-
ison between the two control architectures can be carried out, in terms of response
to piloted attitude angle reference. The step responses of the system closed in loop
with the four controllers are shown in Figure 10, along with the response of the filter
Fθ (s) to a step reference, which itself acts as a reference signal to be tracked by the
four controllers.

5 Concluding remarks

A comparison of two nonlinear control architectures for UAV attitude control has
been carried out by considering a cascade geometric P/PID-like architecture and
a geometric PI-like controller. A systematic methodology for tuning the controller
gains, based on structured H∞, has been sketched and applied to the system closed
in loop with the linearized version of the two controllers.



18 G. Bressan, D. Invernizzi, S. Panza and M. Lovera

100 101 102
-60

-40

-20

0

20

M
ag

ni
tu

de
 [d

B
]

Complementary sensitivity

100 101 102

Frequency [rad/s]

-400

-300

-200

-100

0

P
ha

se
 [d

eg
] C

H

C
L

C
L
D0

G
L

Fig. 9 Complementary sensitivity: comparison between controllers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s]

0

0.2

0.4

0.6

0.8

1

1.2

th
et

a 
[d

eg
]

Filtered step response

C
H

C
L

C
L
D0

G
L

filtered reference

Fig. 10 Closed-loop step response to attitude angle reference.



Attitude control of multirotor UAVs: cascade P/PID vs PI-like architecture 19

The cascade controller was easily tuned to achieve a desired level of performance
and a major advantage over the PI-like controller, in terms of architecture complex-
ity, is that it requires only a desired attitude signal to be implemented on-board,
which has two practical implications. First, when included in a hierarchical strategy
for position tracking, it does not require the computation of a desired angular veloc-
ity and acceleration, which depends upon the snap of the desired position trajectory.
Moreover, when manually piloted, the PI-like controller cannot exploit information
about the desired angular velocity and acceleration, which significantly reduces the
expected performance. A nonlinear trajectory generator filter, which could be easily
implemented on-board, has been developed to mitigate such deficiency and to allow
for a future experimental comparison. In this case, by inspecting the complementary
sensitivity function obtained with the PI-like controller, it is expected that it should
outperform the cascade architecture in terms of tracking.

Future work will be aimed to experimentally validate the preliminary conclusions
drawn in this paper and to gather additional insights into the benefits and disadvan-
tages of the two architectures.
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