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Abstract If the pilot of an aircraft is forced to perform an emergency landing, quick

and reliable decisions regarding the flight path are necessary. Besides, it is not guar-

anteed that a published landing field is located within reach. In such a situation the

selection of an appropriate emergency landing field denotes a crucial task for the

pilot. The choice of a suitable emergency landing field influences the damage of

the aircraft, the civil population, the crew as well as passengers on board. Based on

public available geodata, we developed an application that automatically identifies

emergency landing fields by an appropriate operation sequence of an image pro-

cessing pipeline. Our approach is based on satellite imagery, rasterized road maps,

and interpolated digital elevation models. The chosen image processing pipeline

consists of eight consecutive steps. The results proved that our approach is capa-

ble of a reliable identification of appropriate emergency landing fields for a certain

parametrization of the applied algorithms. The found emergency landing fields are

stored in a MySQL database for fast access, even in the case of instrument meteo-

rological conditions.
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1 Introduction

A total engine failure during a manned flight poses a major threat to the passengers,

air crew and aircraft. In such cases, the pilot is forced to perform an emergency

landing (EL). If the pilot fails during such an extreme situation, the manoeuvre may

even result in a lethal accident.

The Federal Aviation Administration reported that the number of fatal accidents

in General Aviation (GA) has decreased in recent years. Nevertheless, 347 peo-

ple died in 209 GA accidents in 2017. Hence, a significant reduction of lethal GA

crashes depicts a crucial issue. The decrease of fatal flight accidents has been exten-

sively studied and many key techniques were developed to support the pilot in its

decision process. These ranges from various path planning approaches – e. g. in [1]

– to the automatic detection of Emergency Landing Fields (ELF).

Fortunately, if the pilot is compelled to perform an unplanned landing, e. g.

caused by the total loss of thrust, the aircraft is still capable to perform a glide.

The maximum glide range is determined by the kinetic energy (velocity) and po-

tential energy (altitude). Even for highly trained pilots it is challenging to estimate

appropriate ELFs.

The choice of a suitable ELF is be fundamental for the survival of the people

on-board and determines the resulting damage of the aircraft. For this purpose, the

pilot’s decision about the ELF depends basically on: Size, Shape, Slope, Surface,

Surrounding and Civilization [2].

Hence, the main objective of our approach is to simplify and accelerate the de-

cisions of the pilot during an emergency situation regarding the choice of a proper

ELF. To achieve our goal, we process multi-modal geo-data with various well known

and in-house developed image processing techniques. Thereby, each pixel in the

considered area is evaluated referred to its suitability for an EL. After the selection

of landable areas the size and shape of the runways are examined by considering

the minimum length and width for a certain aircraft. If the considered landable area

contains pixels which are already classified as landable, the ELF is further inves-

tigated. Afterwards, the surface conditions are examined with respect to the slope.

Subsequently, the candidate ELF area has to be validated concerning to the obstacle

clearance by taking the gliding angle into account.

The paper is organized as follows: Section 2 is dedicated to the related work.

Section 3 describes the applied machine vision algorithms. Section 4 presents the

data model. In Sec. 5 the achieved results are presented and discussed. Finally, the

proposed findings are concluded and an outlook on our future works is given Sec. 6

2 Related Work

For all kinds of aircrafts the selection of an appropriate ELF during an EL consti-

tutes a crucial task for the pilot. Therefore, several supporting image acquisition and

processing algorithms have been developed in recent years.
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The image processing techniques can be subdivided in three categories: 1) pro-

cessing real-time images obtained by on-board sensors; 2) processing pre-acquired

data; 3) processing multi-modal image sources.

In [3] a two-stage segmentation approach based on satellite imagery is proposed.

First, an initial segmentation is performed by analyzing the corresponding histogram

of the considered satellite imagery to estimate the number of different classes. Af-

terwards, a structure preserving segmentation is performed in the spectral domain.

Nevertheless, this approach lacks in its ability of edge detection and disregards the

suitability for an EL in its dimensions. In [4] another two step processing algorithm

is presented which performs first a sectioning of the considered region – Canny

edge, line growing – and afterwards a geometric check to ensure the suitability re-

garding to the shape as well as dimension of the examined region. Unfortunately,

these image processing steps omit to analyze the slope and bumpiness which are

required to guarantee the suitability of located ELFs.

In [5] a digital elevation model processing approach is introduced which per-

forms the examination by a quadtree data structure. Thereby, the data is separated

till a minimum dimension of the runway is reached. Subsequently, the average al-

titude and the variance within each leaf is calculated. Unfortunately, the metric of

variance and average altitude may be insufficient for the selection of a suitable ELF

because outlier – caused e. g. by buildings – might be pruned which could lead to

a false-positive classification of the corresponding region. Besides, the lack of in-

vestigation of the ELF’s surface could hide e. g. water areas which depicts also a

weakness to the algorithm proposed in [6] where only elevation data is processed

regarding to predefined slope restrictions.

For that reason, the classification of the surface of the ELFs is considered as cru-

cial as presented in [7]. Thereby, the classification is performed by the application

of a multi-class Support Vector Machine (SVM). Other terrain classifications are

proposed in [8] – based on SVM and AdaBoost for multi-spectral images, in [9]

– rest on SVM and multi layer perceptron, and in [10] – premised on SVM and

Random Forrests processing monocular camera data. In [11] a surface classification

algorithm is introduced which applies standard image processing techniques and

artificial neural networks to verify obstacle clearness.

In [12] an k-Nearest Neighbor approach is proposed that considers a feature vec-

tor generated by standard image processing – e. g. histogram thresholding, Canny

edge etc. – of data acquired by an UAV camera and light intensities measured by

a light intensity sensor. Nevertheless, only small areas within the field of view are

analyzed and only a highly restricted number of suitable ELFs can be found. Fur-

thermore, this approach depends on the weather conditions. These drawbacks are

revised in [13] by aircraft-mounted cameras oriented to the front and a horizon de-

tection algorithm to identify the ground in the images. Besides, they apply a nonlin-

ear retinex image-enhancement method to revamp the environmental effects and to

improve the contrast and sharpness. However, the results heavily dependent on the

resolution of the aircraft-mounted cameras and the altitude of the aircraft.

Hence, a combination of processing images from an aircraft-mounted camera and

pre-acquired digital elevation models is shown in [14]. The authors investigated the
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processing of 2D geodata and reconstructed 3D model. In [2] another multi-modal

processing algorithm is proposed. First, preliminary processing steps are performed

as mentioned earlier in [4]. Afterwards, man-made and natural objects were distin-

guished by considering the intensity values. Subsequently, the geometric shape, the

surface type and the slope are considered. Unfortunately, the obstacle clearance of

the final approach is left unconsidered.

Our contribution in the considered research area consists of a new Multi-Modal

Image Processing Pipeline (MMIPP), the verification of obstacle clearance of the

final approach and the provision of a database which contains the achieved results.

3 Machine Vision Algorithms

The proposed Machine Vision (MV) algorithm is based on three different data

sources: elevation data, satellite imagery, and road map. These data was made avail-

able by the Google Static Maps Application Programming Interface (API) and the

Google Maps Elevation API. The data sources are denoted by I in the further read-

ing. First, we assume that every data pixel of the considered area is landable. Of

course, this assertion is incorrect for huge parts of the area. Therefore, the area

which is sufficient for an EL has to be restricted. This is achieved by a pipelined

application of multiple MV operations. Every MV method operates on a predeter-

mined data layer. If an area is marked as inappropriate for an EL, this is valid for all

subsequent MV operations.

3.1 Color Exclusion Method, Segmentation, and Edge Detection

Color Exclusion Method: Every pixel is evaluated regarding a predefined color

threshold. If the pixel exhibits the threshold, it is marked as insufficient for an ELF.

This method is performed in the RGB and HSV color space. In RGB color space

the thresholds for red, green, and blue color – within the considered pixel is inap-

propriate for an ELF – has to be determined. This approach is used e. g. to exclude

water aerials from the examined area. In HSV color space the thresholds for hue,

saturation, and value – within the investigated pixel is unsuitable for an ELF – has

to be parametrized. This approach is used e. g. to exclude man made areas.

Segmentation: After each processing step, a segmentation of the processed data

layer is performed. Initially, every pixel refers to the same segment as long as a

previous determined condition of the neighboring pixel elements is fulfilled. This

algorithm is applied on roadmaps which are differently colored for the various kinds

of areas, e. g. blue denotes water, white tags streets etc. After applying the previous

described color difference method with a threshold of zero for the three color chan-

nels, the roadmap is partitioned into many independent segment. The segmentation

is followed by a counting operation of the number of pixels in each segment. If the
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number of pixels is smaller than the minimum number of pixels required by the

minimum dimension of the ELF, the considered segment is excluded from the sub-

sequent image processing steps and is tagged as invalid for an ELF. The counting

operation of the pixels inside a certain segments is performed in O(n).
Edge detection: Homogeneous areas in satellite imagery or roadmaps are com-

monly suitable for an EL. Areas characterized by sudden intensity changes – which

can be identified by an edge detection algorithm – are often unsuitable for an EL.

First, the chosen layer is converted to a gray scale image followed by the appli-

cation of Canny edge detection. The edge detection by Canny was initially intro-

duced in [15]. Thereby, first the gray scale image is smoothed by the convolution

with a Gaussian filter of size 5× 5 and the standard deviation of 1.4 Subsequently,

the magnitudes and directions of the edges are computed.The gradient direction is

always perpendicular to the direction of the edge and is rounded to one of four an-

gles representing the horizontal, vertical, and two diagonal directions. Afterwards,

a non-maximum suppression is performed to remove unwanted pixels which do not

belong to an edge. Therefore, every pixel is evaluated, if a local maximum is in the

neighborhood in gradient direction. Finally, the hysteresis step decides which pixel

corresponds to an edge and is considered as a strong edge. For that reason, a lower

and higher threshold is required.

3.2 Variance Exclusion and Local Difference Methods

Variance exclusion method: The variance of pre-segmented image areas is com-

puted and the data points are classified as landable if the variance is below the

threshold. First, the mean and subsequently the variance of each segment is cal-

culated. In our work, the variance exclusion method is based on the normal vectors

between the elevation value of each pixel. The normal vector ni with i∈{1,2} is cal-

culated by the cross product of the vectors vi with i ∈ {1,2,3,4} which are spanned

from the considered pixel position to the pixels in the neighborhood as shown in Fig.

1 where v1 −v4 are the spanned vectors from the considered pixel to the neighbor-

n1

v3

v1

n2

v4

v2

Fig. 1 a) n1 calculated as v1 ×v3; b) n2 computed as v2 ×v4.

ing pixels. n1 and n2 are the determined normal vectors. By doing so, eight normal

vectors are calculated. After that, the normal vectors are summed up and normalized
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to a new vector n̂s
i with i ∈ {1, ...,m} and s as index for the considered segment. This

calculation is done for every pixel in the considered area segment. Subsequently, the

mean value of the normalized vectors n̄ for that area is determined as shown in Eq. 1

n̄ =
1

m

m

∑
i=1

n̂s
i (1)

where m denotes the number of pixels in the investigated area segment. Afterwards,

the angle αi between n̄ and n̂s
i is computed as presented in Eq. 2

αi = arccos(n̄ · n̂s
i ) ·

180◦

π
(2)

Finally, the variance is calculated. Therefore, variance equation becomes adopted as

shown in Eq. 3

s2 =
1

m−1

m

∑
i=1

α2
i (3)

where αi is determined as show in Eq. 2 and m denotes the number of pixels in

the observed area segment. This algorithm enables a decision about the roughness

of each inspected segment area. If these variance s2 crosses a certain threshold, the

area is excluded in any further processing step and will be marked as inconvenient

as ELF.

Local difference methods: Basically, this method analyzes the relationships be-

tween neighboring pixel elements and can be applied on all three previous men-

tioned data layers. Generally, a point of the data grid – more details in Sec. 4 – is

chosen and pushed on a stack. The elements of the stack are processed by last in,

first out principle. Consequently, the last element which was pushed on the stack

becomes analyzed first and is considered as central element. First, it has to be en-

sured that the neighboring elements – elements on the stack except the last one –

untreated, still marked as suitable for an ELF and unsegmented. If this assumptions

are valid the neighbor will be assigned to the same area segment as the central ele-

ment and pushed on a stack. If the neighborhood requirements are unsatisfied, the

neighboring element will be marked as inappropriate for an ELF. This procedure is

repeated till the stack is empty. If the stack is empty, but elements remain on the

data grid which are still untreated, the described process is repeated for these ele-

ments with the assignment to a different area segment. The various local difference

methods are depicted in the following.

The slope difference method is applied on the elevation data layer. As metric

for the neighborhood, the angle between connecting line of two adjacent elevation

elements and the horizontal line, as illustrated in Fig. 2 is used where α is the metric

for the slope between two adjacent elevation elements. h1 and h2 are the elevation

values and d12 denotes the distance between the two neighboring elevation elements.

Thereby, the angle α is calculated as shown in Eq. 4

α = arctan

(

|h1 −h2|

d12

)

·
180◦

π
(4)
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Fig. 2 α is the slope be-

tween two adjacent elevation

elements; h1 and h2 are the

elevation values at the cor-

responding pixel positions;

d12 is the distance between

the two neighboring elevation

elements.

α
h2

h1

d12

The color difference method processes color information of the current in-

put data and is applied to the satellite images and roadmaps. The color difference

method is implemented for RGB and HSV color space. For application in RGB

color space, thresholds for the red, green, and blue has to be chosen independently.

If none of the thresholds is exceeded, the neighborhood relation is classified as valid.

The same applies for the application in the HSV color space expect that thresholds

for hue, saturation and value has to be defined. The evaluation of the result is treated

like explained earlier.

The angle difference normal vector method is suitable for processing eleva-

tion data. Thereby, sharp slopes are detected and marked as unsuitable for an ELF.

This is facilitated by computing the normal vectors for every data element, as ex-

plained in Sec. 3.2 The angle between to normal vectors is used as neighborhood

relation requirement. To take the map projection into account, the angle is weighted

by the distance between two data elements. If the weighted angle exceeds a certain

threshold, the neighborhood relation is invalid for an ELF.

3.3 Emergency Landing Field Identification

First, the search of potential ELFs is performed. This requires the following pa-

rameters: Minimum dimension of the ELF; distance between two consecutive ref-

erence points (RP) – RP denotes the center of a ELF; sampling interval of the ELF

direction; max. slope and descent threshold of the considered ELF. Initially, the RPs

are placed in each segmented area with respect to the space between neighboring

RPs. Afterwards, the min. size of the runway is considered by placing a rectangle

around the RP regarding search direction (sd). If the minimum required dimension

is fulfilled and only pixel classified as landable are contained, the total slope and

descent along as well as transversal to the ELF direction are calculated. Provided

that the slope and decent is smaller than the pre-defined threshold, the coordinates

of the RP, start and end point as well as the considered sd are temporarily saved.

Subsequently, an evaluation and optimization of the ELFs is performed.

Secondly, the evaluation and optimization of the temporary ELFs is executed.

This requires the definition of runway’s final approach sector opening angle, the test
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distance (starting from the ELF threshold) and the aircraft’s glide angle. An eval-

uation of each ELF is performed by validating the obstacle clearance of the final

approach sector within the determined test distance. The evaluation of the obstacle

clearance is performed on the elevation data. If the glide path – estimated by the

glide angle – intersects the surface of the elevation data, the investigated ELF is

assumed as unsuitable for an ELF. Otherwise, the ELF becomes optimized in the

subsequent step. Thereby, the dimension along and against the direction of the ELF

is enlarged. After each increase of the ELFs dimension, the ELF is validated regard-

ing to the maximum difference between the new start and end point of the runway

along the center of the ELF in longitudinal direction and the obstacle clearance. This

process is repeated n-times until a threshold is exceeded or the obstacle clearance of

the opening angle is violated. In this case, the new start and end point coordinates

of optimization step n−1 are stored in a MySQL-Database as well as direction and

coordinates of the RP.

4 Data Model

The developed Data Model (DM) consists of multiple layers as shown in Fig. 3

Therein, the DM is shown with three different layers. The uppermost consists of

satellite imagery, the middle one is composed of the corresponding roadmap and

the bottom layer contains the dedicated elevation data. The data in our model is

requested by the usage of the APIs mentioned in Sec. 3. Thereby, the corresponding

cylindrical map projection is taken into account to achieve a correct mapping of the

requested geographical data. Therefore, Eq. 5 must be solved for the longitude λ

x =
λ +180◦

360◦
·256 ·2z (5)

where x is the Cartesian x-component of the considered pixel position and z denotes

the chosen zoom factor as described in [16]. As a result, Eq. 6 is obtained.

λ =
x ·360◦

256 ·2z
−180◦ (6)

Afterwards, Eq. 7 must be solved for the latitude φ

y =






0.5−

log10

1+sin(φ · π
180◦ )

1−sin(φ · π
180◦ )

4π






·256 ·2z (7)

where y is the Cartesian y-component of the analyzed pixel position. z denotes the

chosen zoom factor as mentioned earlier. The result is shown in Eq. 8

φ = arcsin

(

1−
2

10(0.5− y
256·2z )·4π +1

)

·
180◦

π
(8)
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Fig. 3 Data model composed

of three layer: Lowest is the

elevation layer; Middle is

the roadmap layer and the

uppermost is the satellite

imagery layer.

Furthermore, the resolution of the elevation data is lower compared to the other

layers. In order to achieve an assignment of an elevation value to every pixel of the

imagery a bilinear interpolation is performed between four elevation data points:

B j,k,B j+1,k,B j,k+1,B j+1,k+1. This technique is composed of the interpolation in x-

and y-direction. The first interpolation in the horizontal direction is shown in Eq. 9

B j+x,k = (1− x) ·B j,k + x ·B j+1,k

B j+x,k+1 = (1− x) ·B j,k+1 + x ·B j+1,k+1

(9)

where x denotes the shift amount within the four elevation points. The second inter-

polation in the vertical direction is given by Eq. 10

B j+x,k+y = (1− y) ·B j+x,k + y ·B j+x,k+1 (10)

where y is the shift amount within the four elevation points in vertical direction.

For further reading [17] is suggested. After the creation of the DM each layer is

processed with a certain MV-technique as described in Sec. 3. The MMIPP and the

results are presented and discussed in Sec. 5.

5 Results and Discussion

Our objective is the identification of ELFs and their provision in a database. Thus,

even in instrument meteorological conditions the decisions of the pilot can be sup-

ported in an emergency situation. First, the satellite imagery, roadmaps, and digital

elevation model are queried by the usage of APIs provided by Google. Afterwards,

the DM introduced in Sec. 4 is created.

Thereafter, the considered aircraft model is chosen to determine the minimum

requirements regarding the dimensions of the ELF. As a sample aircraft a Diamond

DA20-C1 is selected. In [18, p. 5 - 17] the minimum required length of an ELF

is stated as 214 m by assuming international standard atmosphere, maximum take

off mass and 610 m height as mean sea level. This specification is invalid for ELFs

covered by grassland, fields or other surfaces. As a consequence, the recommended

length for the chosen aircraft model in the corresponding manual has to be adjusted.

The manual omit how the runways length should be adjusted. The manual of the

Diamond DA40 D recommends to increase the length of the ELF about 25% in cases
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of unpaved ELF with grass longer than 10 cm which results in a new length of 267.5

m. Furthermore, the manual describes to increase the length of the ELF about 10%

for an inclined ELFs of about 2% which corresponds to a gliding angle of 1.1◦ and

results in a new minimum length of 294.25 m [19, p. 5 - 19]. The minimum width of

the ELF was determined as the triple of the aircrafts span (32.67 m). Subsequently,

the best configuration of our MMIPP is investigated.

The best configuration is determined by executing all permutations of the MMIPP.

Thereby, the potential ELF identification, the ELF evaluation and optimization is

fixed in the processing pipeline as highlighted in bold as step seven and eight in

Tab 1. Thus, 6! = 720 possible permutations remain. To restrict the computational

Table 1 Best configuration of the developed MMIPP with corresponding execution times.

Step Algorithm Layer Color space Exec. time [s]

1 Local color difference Roadmap RGB 62.704

2 Color exclusion Roadmap HSV 52.519

3 Edge exclusion Satellite imagery RGB 68.468

4 Local color difference Satellite imagery HSV 43.943

5 Variance exclusion DEM – 121.659

6 Local slope difference DEM – 42.834

7 Potential ELF identification Segmented map RGB 474.03

8 ELF evaluation and optimization Segmented map RGB 442.647

Total execution time: 1’193.581

demand the local color difference and color exclusion technique remain fixed in

there position of the MMIPP. This is emphasized in bold for step one and two in

Tab. 1 Thus, 4! = 24 permutations are left for further investigations. The choice of

the best configuration of the MMIPP is based on the following two metrics: Ex-

ecution time and number of identified ELFs. Thereby, the main objective is min-

imum execution time and lowest count of identified ELFs. As a consequence of

the minimum number of identified ELFs it is assumed that the probability of a

false/positive classification – expect to be the worst case scenario regarding to ELF

identification – is lesser as in other permutations. The determined best configura-

tion is shown in Tab. 1 which contains the assignment of each processing step to

a certain data layer and color space. Furthermore, the execution time of the in-

dividual processing steps and the whole processing time for the investigated five

km2 area at location (N: 51.54056◦, E: 7.94889◦) are presented and summed up to

1’193.581 s. It is obvious that the search of potential ELFs with 474.03 s and their

evaluation and optimization with 442.647 s take the major amount of time during

the execution of the MMIPP. Table 2 presents three permutations of the proposed

MV-techniques where the first permutation depicts the configuration as introduced

in Tab. 1 The remaining two permutations are the shuffled order of the process-

ing steps regarding the best configuration shown before. The sequence variations

of the MMIPP are highlighted in gray color. The second permutation represents
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Table 2 Summarized execution times (ET), excluded area (EA), number of valid reference points

(Nr. RP) and number of optimized ELFs (Nr. ELF) for three permutations of the MMIPP.

Permutation 1 Permutation 2 Permutation 3

PT EA [%] ET [s] PT EA [%] ET [s] PT EA [%] ET [s]

Step 1 8.03 62.704 Step 1 8.03 62.704 Step 1 8.03 62.704

Step 2 8.03 52.519 Step 2 8.03 52.519 Step 2 8.03 52.519

Step 3 22.67 68.468 Step 6 9.97 57.018 Step 3 22.69 68.453

Step 4 28.19 43.943 Step 5 15.2 150.574 Step 5 26.18 129.032

Step 5 32.91 121.659 Step 4 22.92 48.551 Step 6 27.54 46.286

Step 6 34.12 42.834 Step 3 31.48 62.532 Step 4 32.24 41.537

Step 7 — 474.030 Step 7 — 560.151 Step 7 — 653.613

Step 8 — 442.647 Step 8 — 755.933 Step 8 — 1035.024

∑ET [s] 1193.581 ∑ET [s] 1634.759 ∑ET [s] 1973.945

Nr. RP 4 Nr. RP 5 Nr. RP 5

Nr. ELF 9 Nr. ELF 11 Nr. ELF 11

the order of the processing methods where the smallest amount (about 31.48%)

of the considered area was denoted as unsuitable for an EL. Obviously the steps

3 to 6 are in reversed order relating to permutation 1. The processing differences

of the results obtained by the first and second permutation are illustrated in Fig. 4

Fig. 4 Red: permutation 1

classified as landable, per-

mutation 2 classified as ex-

cluded; green: contrary case.

where the final segmentation result of step 1 - 6 is sub-

tracted from the segmentation output of the best con-

figuration which was the permutation with the great-

est amount of area classified as inappropriate for an EL

(34.12%). The red color denotes areas classified as suit-

able for an EL by the first and excluded by the second

permutation. The green color shows the contrary, these

are areas which are tagged as landable by the second

and excluded by the first permutation. It can be seen,

that more areas are classified as convenient for an EL

by the second than by the first permutation. Hence, per-

mutation 2 placed one more RP and identified two fur-

ther ELFs. Permutation 3 represented in Tab. 2 has the

longest total execution time (∑ET). The ∑ET of the best and third permutation dif-

fer in 780.364 s which is 65.38% of the first permutation’s processing time. Step 5

takes the longest duration among processing steps 1−6. Considering the amount of

EA after those steps – lower in permutation 2 and 3 compared to the first one – it

is obvious that the processing time of step 7 is closely related to the area excluded

by the previous steps. The ET of step 8 depends on the number of identified poten-

tial ELFs. With application of permutation 2 and 3 eleven valid ELFs are identified

whereas the execution of permutation 1 is able to find nine ELFs suitable for an EL.

Previous results lead to the conclusion that the selection of the MMIPP’s best

configuration is a multi-objective optimization problem. While being anxious to
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reduce the ∑ET, the number of detected ELFs should be small to avoid false/positive

classifications.

The results of the proposed MMIPP are shown in Fig. 5, where eight partial

figures are shown and labeled from (a) to (h). In Fig. 5 (a) the processing result of the

local color difference method the initial segmentation operating on the roadmap data

in RGB color space is shown. Red regions mask areas which are potentially landable

and parts of the image classified as unsuitable for an EL are colored differently (this

color notation is valid for Fig. 5 (a) - (d)). The algorithm is parametrized as follows:

R = 0, G = 0, B = 0. If one of the thresholds is exceeded, the pixel is assigned

to another class. Afterwards, each segment is evaluated regarding the number of

included pixels. Obviously, there are certain regions in the area containing a smaller

number of pixels than required by the minimum dimensions of the ELF.

The result of step two is presented in Fig. 5 (b). The main objective is the removal

of water areas. Due to the lacking water in the examined area, the result is exactly the

same as shown earlier in Fig. 5 (a). The thresholds of the considered algorithm are

parametrized as follows: H = 200 - 230; S = 0 - 1; V = 0 - 1. If all three HSV-values

lie outside of this intervals, the investigated pixel is classified as landable.

In Fig. 5 (c) the result of Canny edge detection is shown. We implemented a

modified version to automatically determine the necessary thresholds. For the se-

lection of the upper threshold, we applied Otsu’s thresholding on the preliminary

computed gradient map with the aim of the threshold selection which distinguish

the two classes (edge or not) with the highest possible variance [20]. Afterwards,

the selected upper threshold is divided by a factor of two, as recommended in [15],

to set the lower threshold. It is obvious, that the number of homogeneous areas is

reduced dramatically which will minimize the number of identified ELFs.

In Fig. 5 (d) the result of step four is presented. The three thresholds are defined

as follows: H = 22; S = 1; V = 1. As a consequence of the parameterization only the

hue value is considered during the execution of the local color difference method.

If the hue of the neighboring pixel elements exceeds a delta of 22, the considered

pixel is excluded and hence, marked as not landable.

In Fig 5 (e) the processing result of step 5 is shown. The black color denotes the

segmentation result (suitable for an ELF). The other colors in the image indicate

areas which are not landable. The maximum accepted variance is 0.001%. Other-

wise, the considered area is assumed as too bumpy and tagged as unsuitable for an

EL. It is obvious, that regions with fast changing elevation data are excluded and

homogeneous areas are left for the further analysis.

The result of step six of the presented MMIPP is illustrated in Fig. 5 (f). The

black color illustrates the segmentation result and denotes the landable areas. The

slope difference was set to 10◦ so that only sharp elevation gradients are excluded

from the remaining processing steps and classified as unsuitable for an ELF.

The search result of potential ELFs is shown in Fig. 5 (g). A total of nine po-

tential ELFs were identified with an parameterization as follows: Minimum width =

32.67 m and length = 294.25 m; distance between two consecutive RPs = 294.25 m;

sampling interval of ELF direction = 15◦; maximum slope along sd = 1◦, towards

sd = 5◦ and orthogonal to sd = 3◦.
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(a) Step 1: Local color differ-

ence; Roadmap; RGB

(b) Step 2: Color exclusion,

Roadmap, HSV

(c) Step 3: Edge exclusion,

Satellite imagery, RGB

(d) Step 4: Local color differ-

ence, Satellite imagery, HSV

(e) Step 5: Variance exclusion,

DEM, HSV false color represen-

tation

(f) Step 6: Local slope differ-

ence, DEM, HSV false color

representation

(g) Step 7: Result of the potential ELF identifi-

cation illustrated in RGB satellite imagery.

(h) Step 8: ELF evaluation and optimization re-

sult shown in RGB satellite imagery.

Fig. 5 Intermediate and final results of the MMIPP.
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The recognized ELFs were further analyzed in the last step of the MMIPP to en-

sure the obstacle clearance of the final approach which yields to the result shown in

Fig. 5 (h) The opening angle of the ELFs approach sector was 30◦, the test distance

was 2000 m and the glide angle was 5◦. Apparently the final approaches of the iden-

tified ELFs are free of obstacles. The processing result is also shown in Fig. 6 where

312.43 m

4
9
1
.0

2
m

(a) First segment classified as landable.

6
2
0
.5

4
m

282.68 m

(b) Second segment classified as landable.

436.92 m

3
0
5
.1

8
m

(c) Third segment classified as landable.

Fig. 6 Mapping of all processed input layers, their corresponding transition into HSV color space

and the final output represented by red color. First: RGB roadmap; Second: HSV roadmap, Third:

RGB satellite imagery; Fourth: HSV satellite imagery; Fifth: HSV false color representation of

DEM; Sixth: final segmentation result of the proposed MMIPP.

the mapping of the three input data layers, their transition in the HSV color space

and the outcome of the developed MMIPP is illustrated. The ELFs are shown by

white lines in each segment. The yellow stars denote the runway threshold. Further-

more, it can be seen that the first segment is 491.02 m long and 312.43 m width. The

second segment extends to a length of 620.54 m and a width of 282.68 m. Lastly, the

third segment is 305.18 m long and 436.92 m wide. Obviously, the dimensions of

all considered segments are big enough for performing an EL with the investigated

aircraft. The gray image segments in Fig. 6 (a) to (c) denote the roadmap data layer

in RGB and the second segment in HSV color space. The third and fourth segment

in Fig. 6 (a) - (c) show the corresponding satellite imagery in RGB and HSV color

space. Furthermore, the fifth segment illustrates the false color representation of the

digital elevation model after applying the bilinear interpolation and the last segment

shows the final processing results of the considered areas. Fig. 6 depicts that the

identified ELFs are placed in regions which are quite homogeneous in all analyzed



MMIPP for a Reliable ELF Identification 15

input data layers in both color spaces. Even the segments of the digital elevation

model does only contain smooth changes regarding to slope.

Table 3 shows the position of each placed valid RP (RP lat/ RP lon). Thereby,

Table 3 ELF length and increase relating to the minimal required dimensions.

ELF idx RP lat RP lon direction [◦] length [m] ∆ length [%]

1 51.53066 7.99056 210 295.72 0.5

2 51.52868 7.9875 210 326.2 10.9

3 51.52274 7.9587 60 294.69 0.15

4 51.52274 7.9587 90 446.85 51.86

5 51.52274 7.9587 245 453.09 53.98

6 51.52274 7.9587 225 296 0.6

7 51.52076 7.95069 60 325.66 10.68

8 51.52076 7.95069 90 311.6 5.89

9 51.52076 7.95069 45 301.79 2.56

values in rows colored with the same gray-level correspond to the same RP but have

different EL directions. Furthermore, the optimized length of the ELF and increase

in length with respect to the min. required dimension is represented (∆ length).
By executing the proposed best permutation of the MMIPP a total of nine run-

ways were identified. Moreover, four of the placed RPs were valid for identifi-

cation of ELFs. Obliviously, the increase of the ELFs length – achieved by step

8 – ranges from 0.15% to 53.98% which depicts an extension from 0.44 m to

158.84 m. Unfortunately, the enlargement of the ELF in longitudinal direction

is only evaluated regarding to slope and descent for the center line of the ELF.

Fig. 7 Applied Bresenham line

drawing algorithm for capturing

the elevation data.

Therefore, the ELFs have to be further evaluated so

that the criteria regarding bumpiness, slope and de-

scent are still fulfilled after the enlargement of ELF

length.

The elevation data of the identified ELFs were ex-

tracted from our DM. For this purpose, the known

properties of each ELF were used to determine their

corresponding bounding box by applying the Bresen-

ham line drawing algorithm proposed in [21]. Ini-

tially, the Bresenham algorithm was also applied to

receive all elevation data points describing the ELF.

Hence, a perpendicular line was drawn from each

point on the transversal of the ELF boundary to the

corresponding parallel point on the other transversal ELF boundary. This proceed-

ing is only capable to deliver all contained elevation data points covered by the

ELF aligned to the transversal and longitudinal direction as shown in Fig. 7. Ob-

viously, some elevation points will be missed and others are extracted twice. For

that reason, first the min. sized rectangle aligned to the x-axis is determined so that
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the whole dimensions of the considered ELF is contained. This enables the reduc-

tion of the computational demand regarding to the extraction of the elevation data

of interest. For the decision which elevation data were covered by the preliminary

determined bounding box of the ELF, the algorithm introduced in [22] is applied.

Regrettably, this algorithm works non-reliable for the boundary points of the bound-

ing box. Hence, the algorithm was adjusted with our prior acquired knowledge about

the bounding box. To simplify the subsequent analysis of extracted elevation point

cloud, each point is rotated by the direction of the ELF such that the whole point

cloud is aligned to the y-axis.

For the evaluation of each length-optimized ELF, the data is partitioned into three

parts – primal elevation data; The extension of the ELF towards and along the pro-

posed approach direction – if the length extension in both directions has been exe-

cuted and was preliminary considered as valid increase of length. Subsequently, the

analysis of the generated point clouds is based on the fitting of a plane to each part

of the ELF. Therefore, the least-squares minimization algorithm provided by the

python library SciPy was used [23]. In Fig. 8 the evaluation result are illustrated.

In Fig. 8a the calculated plane equations for the point clouds of an exemplary ELF

(a) 3D view of the point cloud elevation data with fitted planes.

(b) Two dimensional view of the elevation data.

Fig. 8 Evaluation procedure of the identified ELFs illustrated by an example

are illustrated. Each plane is depicted in a different color – violet: fitting to primal

elevation data; yellow: fitting of elevation data enlargement to the left and green: fit-

ting of elevation data enlargement to the right. Thereby, n̂i with i ∈ {l, p,r} denotes

the normalized normal vectors of the three planes. The di with i ∈ {l1, l2,r1,r2}
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is the relative distance between two consecutive planes with respect to the increase

length of the ELF. The αi with i ∈ {l,r} depicts the angle between the normalized

normal vectors, namely n̂p and n̂l as well as n̂p and n̂r. The values of αi and di

are used to determine the suitability of the considered ELF for an EL. In Fig. 8b

the 2D view of the elevation data of exemplary ELF is shown. The black rectangle

highlights the dimension of the initial ELF. The color gradient is shown as smooth

transition over the whole length of the ELF.

To facilitate the examination of the elevation data regarding to bumpiness, slope

and descent proper thresholds for the maximum valid angle (αi) and distance be-

tween two consecutive planes (di) has to be determined. For that reason, the di-

mensions of the considered aircraft are consulted. It has to be guaranteed that the

aircraft avoids touching the ground except with the wheels. Therefore, the threshold

for the maximum valid angle αi between two consecutive planes has to be deter-

mined. Hence, the dimensions are obtained by the manual of the DA20-C1 where a

sketch with a scale of about 1:100 is given as shown in Fig. 9 Mainly, it has to be

α1 α3 α2

Fig. 9 Dimensions of the aircraft; critical angles denoted by red and green triangles [18, p. 1-5].

assured, that the prop, tail and trunk are not touched by the ground during an EL.

Because of the structure of the considered aircraft, it is assumed to be unlikely, that

the trunk of this aircraft will touch the ground. Especially, the preliminary process-

ing techniques had excluded such worse case scenarios. Therefore, the parameter

α3 in Fig. 9 is omitted during the following analysis. Furthermore, if the constraint

of α2 – shown in Fig. 9 – is violated, this may not be the case for α1. Hence, α2

is chosen as threshold value for the maximum valid angle between to consecutive

fitted planes. For the Diamond DA20-C1 αi is 11.89◦. The maximum distance be-

tween two consecutive planes is determined by the size of the aircrafts nose wheel

snw, the maximum valid angle αi, the increase in length li and the steps size ss as

shown in Eq. 11

di = ss · tan(αi)+
snw

s f 1

· s f 2 · li (11)

where s f 1 and s f 2 are safety factors parametrized as follows: s f 1 = 4 → we assume

that the maximum angle conquerable by the nose wheel where it hits an obstacle is

45◦; s f 2 = 0.01 → per 1 m increase in the length of the ELF, the di value is raised
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by 1% of the quarter of the nose wheel size. Besides, ss is assumed as 1 m and the

snw is 5 1
4

in ≈ 13.335 cm as stated in [18, p. 1-6].

Table 4 shows the results of the application of Eq. 11 for dr and dl for ELFs which

are increased in length greater than 1%. Thereby, the ELF indexes correspond to the

Table 4 Calculated thresholds for the distance between two consecutive planes and their actual

values for ELFs with a increase in length greater than 1%.

ELF idx
Left/Middle Right/Middle

dr da
r αr dl da

l αl

2 1.59 m 1.59 m 2.20◦ — — —

4 4.84 m 0.52 m 0.34◦ 0.51 m 1.14 m 0.23◦

5 0.79 m 0.75 m 0.41◦ 5.14 m 0.46 m 0.19◦

7 — — — 0.94 m 2.61 m 0.99◦

8 0.71 m 0.29 m 0.76◦ — — —

9 — — — 0.39 m 0.16 m 0.47◦

one shown in Tab. 3 Additionally, the obtained actual value for the distance between

two consecutive planes da
r and da

l is presented. The values of da
l for the ELFs with

indexes four and seven exceed their corresponding thresholds dl – highlighted in

gray. For those ELFs the authors recommend to revert the length optimization along

the left direction. Besides, it can be seen that the angle between two neighboring

planes is below the preliminary mentioned threshold of αi.

In this section, the best permutation, parametrization and results of the introduced

MMIPP were proposed. The selection of the MMIPP’s configuration was mainly

based on two criteria and the best ordering of the image processing techniques might

be different from the chosen one depending on the considered area.

The results have shown that Canny edge might be better applied on a high resolu-

tion digital elevation model. This became obvious especially by processing fields in

the satellite images which were covered by visible traces – caused by e. g. tractors.

These traces were detected as edges also if the field might be suitable for an EL.

Due to the optimization of the ELFs length, further analysis was necessary to

guarantee that the ELFs were still suitable for an EL. It was shown, that the opti-

mization of the length should be reverted in two cases with respect to the selected

thresholds and evaluation methods.

6 Conclusion and Future Works

In this paper a MMIPP was proposed to facilitate the identification of ELFs.

Thereby, standard and self developed MV-techniques were introduced in Sec. 3

Those are subdivided into local and global exclusion methods. Afterwards, the DM

with three data layers was introduced in Sec. 4. Besides, the bilinear interpolation
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was proposed which enabled the correct mapping of the elevation layer so that ev-

ery pixel in the other two layers has a corresponding elevation value. In Sec. 5 the

parametrization and results were proposed, further evaluated and discussed. First,

the best permutation of the MMIPP was analyzed with respect to the execution

time, the number of identified ELFs. Subsequently, the result of each image pro-

cessing step as well as the final result of the proposed MMIPP for each analyzed

data layer was presented. Each identified length optimized ELF was further exam-

ined and evaluated, if those are still suitable for an EL. Therefore, the thresholds for

the chosen metrics were introduced and it was obvious that two optimizations of the

ELFs length should be reverted.

In our future work we will investigate greater areas with a more precise digital

elevation model provided for the region of North Rhine-Westphalia. Furthermore,

the MMIPP will be enlarged with other machine vision and learning techniques.

Beyond that, we will exchange our database by a PostgreSQL with its PostGIS

database extender. It is worth to mention to facilitate the processing of bigdata by the

usage of Hadoop or Spark. The proposed greedy search for placing RPs will be

revised or completely exchanged by a other procedures. Moreover, the introduced

MMIPP is incapable of real-time ELF selection and has to be done before the flight.

To ensure the obstacle clearance of temporary objects (e. g. tractor, people etc.) of

the ELFs real-time processing of on-board sensor data has to be performed.
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