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Abstract Attitude estimation is a corner stone of the flight stability or safety for
UAVs. Even if a large panorama of efficient solutions exists, it is still difficult to
guarantee the accuracy of the attitude filter during common disturbances (large ac-
celerations or local magnetic disturbances). The integrity of the covariance (accu-
racy estimation) is also a difficult point in both nominal and disturbed case. This
paper introduces a fault tolerant architecture for attitude estimation. It is intended to
handle sensor malfunctions and unexpected environmental disturbances. The esti-
mation architecture consists of three distinctive parts: a set of sensor models to de-
tect incoherent or corrupted sensor measurements; a sensor data health check which
activates or deactivates the state correction of the attitude filter; an attitude filter in-
cluding a saturated gyroscope bias model and a decoupling between the roll/pitch
and yaw angles. Simulation and experimental results show that the proposed archi-
tecture handles both inertial acceleration disturbances and magnetic disturbances
without the need for speed or position measurements, or drag force models.

1 Introduction

An accurate and robust attitude estimation is crucial in GNC-applications. The atti-
tude calculation lies at the core of GNC systems and therefore directly impacts the
system stability. In addition, the attitude estimate must remain integrate, meaning
that the actual attitude should lie within a certain confidence interval of the esti-
mated attitude.
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The accuracy of the attitude estimation will naturally depend on the quality of
the sensors involved and its robustness on the redundancy (physical or analytical),
and the numerical stability of the algorithm used to fuse the sensor data.

In low-cost/low-weight applications, MEMS-sensors for gyroscope, accelerom-
eter, and magnetometer measurements are the usual go-to. The main issue of these
sensors is apart from their low accuracy, that the are easily disturbed. The gyroscope
being the most reliable sensor in terms of accuracy, will be subject to bias and scale
factors. Accelerometers are disturbed by inertial accelerations and vibration. Mag-
netometers will only work well in environments free from magnetic disturbances.

A way of handling this problem is to use a force model to reconstruct the sensor
data ([1], [2]), although this requires precise knowledge of the vehicle properties and
it may couple the actuator and sensor failure detection. Alternatively one can make
use of auxiliary sensors such as a GNSS receivers ([3], [4], [5]). But this requires
good refresh rates and good conditions (clear-sky) to be efficient and it is not reliable
close to the ground, buildings or trees due to multi-trajectory. This will also create
the need for failure detection of the auxiliary sensors (e.g., jump in GNSS solution).

Yet another solution, is the use of performance models that model the behaviour
of the sensor itself. The standard attitude estimation assumptions are zero specific
acceleration and a locally known magnetic field, see for example [6]. In [7] the local
magnetic field is supposed to be regular enough that its evolution can be tracked by
measuring its gradient. An alternative presented herein is to assume that the sensors
will indicate their inertial references (e.g. gravity) in finite time.

In regards to reliable attitude filters, many recent works concern either comple-
mentary filters [8] with guaranteed convergence or various Kalman filters ([9], [10],
[11]). In an attempt to bridge the gap, [12] recently proposed a cascaded nonlinear
osbserver coupled with a Kalman filter. In [13], a filter based on the evolution of
body vector measurements is introduced. In practical implementations, both types
have shown good results. Whilst the complementary filter will always get you home,
the notion of covariance of the Kalman filter will indicate roughly how lost you are
on your way (although a Kalman filter did get man to the moon and back [14]).

To improve the robustness of an attitude filter, one can decouple the yaw esti-
mation from the inclination (roll/pitch) estimation by mixing the accelerometer and
magnetometer measurements [15]. The obvious weakness of this approach is that
potential accelerometer faults will impact the yaw estimation directly.

In this paper we propose an architecture that uses performance models coupled
with a set of statistical tests to detect sensor anomalies, in order to not use corrupted
sensors’ measurements. The attitude is then estimated by a nonlinear Kalman Filter
(NLKF) using a modified correction step. Instead of correcting the entire attitude in
one go, our filter uses a sequential correction to update the inclination and heading
separately by imposing a structured correction.

The robustness of the attitude estimation is further improved by introducing a
saturated bias model similar to [16] which limits the growth of the gyroscope bias
in case of erroneous measurements or prolonged periods without state corrections.
The problem of properly linearising such a model is further treated in order to get a
correct estimation of the associated covariance. The estimation architecture is finally
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validated by confronting the ground truth (measured by a motion capture system)
to the estimation results obtained during flight tests with a quadrotor UAV. The
estimations of the proposed architecture are also compared tot he well known filter
of the Pixhawk solution, during nominal flight, but also in case of high acceleration
and magnetic disturbances.

Paper structure

The paper begins with an introduction of the attitude estimation problem in section
2 and the general extended Kalman filter (EKF) equations in section 3. An overview
of the fault tolerant estimation architecture is given in section 4 along with tuning
considerations in section 5. Experimental results are presented in section 6 for three
typical trajectories with and without magnetic disturbances. Some conclusions on
the effectiveness of the architecture with regards to large accelerations and magnetic
disturbances are finally drawn in section 7.

2 The attitude estimation problem

The rotation of the body fixed frame (B) w.r.t the inertial frame (I) is given by the
rotational matrix R. We define the rotation direction from the body frame to inertial
frame by R, and the inverse rotation by R−1 = RT , i.e:

rB = RT rI ⇔ rI = RrB (1)

The attitude estimation problem consists of finding vector measurements rB,m
satisfying (1) for some vector rI,re f . A rotation can be more conveniently expressed
with a unit vector η and an angle β , i.e. a unit quaternion defined as

q , (cos(β/2) , η sin(β/2))T = (s, n)T . (2)

The relation between R and q is called Rodrigues’ formula and is written as
R(q) , I−2sv×+2v2

×, where v× is the skew-symmetric representation of v. The
quaternion kinematics are given by

q̇ =
1
2

Ω(ω)q, Ω(ω) =

[
0 −ωT

ω ω×

]
, (3)

where ω , (ωx, ωy, ωz)
T is the vector of body angular rates. For the passage to

discrete time, Euler’s method can be used if the integration is small enough, however
it produces a quaternion which is no longer unitary and must be normalised:
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q̃k+1 = qk +
1
2

Ω (ω)∆ t qk

qk+1 =
q̃k+1

||q̃k+1||
(Normalisation)

(4)

In MEMS applications, factors such as sensor noise have a much larger impact when
the integration step is small, than this normalisation step.

3 The Kalman filter

As seen above, attitude estimation is a nonlinear estimation problem, we therefore
require a nonlinear filtering method. In this work, it was chosen to use mainly the
Extended Kalman Filter (EKF), as it allow to both estimate state and associated
covariance, i.e., uncertainty. The proposed architecture uses three different filters,
two EKF for the sensor performance models, and one NLKF (nonlinear Kalman
Filter) as the main attitude estimator. The use of an NLKF instead of a classical
EKF is due to the correction method used for the quaternion to keep the quaternion’s
physical meaning and decouple the inclination and heading dynamics (more details
are given in section 4.3.2)

3.1 The Kalman machinery

Given the non-linear model:

xk+1 = f(xk, uk, vk)

yk+1 = h(xk+1, wk+1)
(5)

where vk ∼ N (0,Vk) and wk+1 ∼ N (0,Wk+1) are respectively input and mea-
surement noise. An EKF that provides an estimate x̂ of x is defined by the following
equations (Joseph’s form):

Prediction Correction

x̂+k+1 = f(x̂k, uk) x̂k+1 = x̂+k+1 +Kk+1 νt+1

P+
k+1 = Fk Pk FT

k +Gk Vk GT
k Pk+1 = [I−Kk+1 Hk+1] P+

k+1 [I−Kk+1 Hk+1]
T

+Kk+1 Wk+1 KT
k+1

(6)

P denotes the covariance of x̂, ν the innovation, and K the correction gain. The
Kalman gain is the value of K which minimizes the covariance, and is given by:
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νk+1 = yk+1−h
(
x̂+k+1

)
Sk+1 = Hk+1 P+

t+1 HT
k+1 +Wk+1

Kk+1 = P+
k+1 HT

k+1 S−1
k+1

(7)

where S is the innovation covariance. The Jacobians Fk, Gk, and Hk+1 are calculated
as

Fk =
∂ f

∂xk |x̂k,uk

, Gk =
∂ f

∂vk |x̂k,uk

, Hk+1 =
∂h
∂xk |x̂+k+1

. (8)

4 New fault tolerant architecture

In this work, we are interested by the convergence of the estimation filter but also
(and mainly) by the integrity of the estimated state’s covariance, even when tempo-
rary disturbances appear on the measurements. This integrity can be achieved thanks
to the two following principles:

• Orthogonal Measurements: The estimator is built to decouple the inclination and
heading estimations, and to make the inclination estimation robust to magne-
tometer failures and the heading estimation robust to accelerometer failures. This
is achieved by not using accelerometer and magnetometer measurements directly,
but pseudo-measurements based on them,

• Fault tolerant mechanisms: Some mechanisms were introduced to detect invalid
measurements, in order to reject or correct them before the correction step. This
allows to maintain the integrity of the estimated state and covariance during tem-
porary disturbances on accelerometers and magnetometers.

We propose a new fault tolerant attitude estimator architecture consisting of three
distinct stages. The first stage estimates the accelerometer and magnetometer out-
puts and incorporates a step of statistical testing to detect erroneous measurements
(performance models). The second stage aims to consolidate the sensor data, that is
to decide whether the estimated output or the actual measurement should be used.
The third stage is the actual attitude filter which provides an estimate of the attitude
and the gyroscope bias, using virtual inclination and heading measurements based
on consolidated accelerometer and magnetometer measurements. An overview of
the architecture is seen in Fig. 1.

4.1 Sensor model blocks: ”EKF Mag.” and ”EKF Acc.”

These blocks provide an estimate of the sensor outputs using an EKF. We denote the
sensor output estimation by r̂B (denoting either acceleration, âB, or magnetic field,
m̂B). The sensor EKFs are constructed as three step filters with prediction, outlier
mitigation, and correction. The prediction model used is
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Fig. 1 Fault tolerant attitude estimation architecture overview

r̂B,k+1 = r̂B,k−
(

Ω̂ r̂B,k +
1
τr

(
r̂B,k− R̂T rre f

))
∆ t, Ω̂ =

(
ωm− b̂ω

)
× . (9)

This model corresponds to a vector measurement that follows the rotation of
its reference vector while allowing for transient deviations, e.g. quick accelerations
or magnetic perturbations. The time constant τr corresponds to presuming that the
attitude estimation remains correct during a transient disturbance.

Before the correction step, the norm of the measurement is tested. Since the mea-
surement rm,k+1 is Gaussian, its norm ||rm,k+1|| will also be Gaussian with a mean
value of ||rre f ||. We can therefore test the residual δ||rm,k+1|| = ||rm,k+1|| − ||rre f ||
with a χ2-test, given a probability of false alarm with the following hypotheses:

H0 :Measurement norm OK ⇒ r norm = 0
H1 :Measurement norm NOT OK ⇒ r norm = 1

(10)

The prediction step is done as per equation (6) with the model 9. The correction step
is skipped completely if the status flag r norm is raised. Otherwise, the correction is
done as per equation (7), using the measurement equation rm,k+1 = r+B,k+1 +wk+1.
To account for sensor faults that are not seen by the measurement norm, an outlier
mitigation is implemented.

4.1.1 Outlier mitigation

A complementary strategy to increase the precision of any Kalman filter is to reject
incoherent measurements by testing the innovation. Instead of outright rejection of
measurements, it is more cautious to use the measurement but with a decreased gain
in order to mitigate its effects.
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The innovation νk+1 is calculated for a measurement rm,k+1 as per equation (7)
using a mitigated covariance which is built as follows:

Before using a measurement, a check is performed to verify there is an intersec-
tion between the prediction and measurement covariances, i.e.

∆νk+1, i , nσ

[√(
Hk+1 P̂+

k+1 HT
k+1

)
i,i +

√
(Wk+1)i,i

]
(11)

where nσ is the confidence level at which the outlier mitigation starts. The innova-
tion intersection is defined by the test:

∆νk+1, i
No intersection

≶
Intersection

νk+1, i (12)

If no intersection is found, we redefine the measurement covariance to include
the predicted estimate, by increasing the measurement covariance as:

W ∗i,i =
(
|ν |i−nσ

√(
H P̂+ HT

)
i,i

)2

W ∗i, j = 0
, i, j = {1, . . . , dim(ν)} (13)

The correction is the done using the covariance W ∗ instead of W in equation (7).
A status flag r outlier is raised if no intersection is detected by the test (12):

H0 :Measurement intersection ⇒ r outlier = 0
H1 :No measurement intersection ⇒ r outlier = 1

(14)

In addition to the test (12), the outlier flag is also raised if the innovation νk+1
does not pass a whiteness test, i.e:

H0 : Innovation is white noise ⇒ r outlier = 0
H1 : Innovation is not white noise ⇒ r outlier = 1

(15)

4.1.2 Sensor model integrity

We can check the integrity of the sensor model by projecting the estimate into the
inertial frame (assuming R̂ is correct) and removing the inertial reference, i.e. δr̂I =
R̂ r̂B− rre f . As for the measurement norm, this residual is also Gaussian and can be
tested with a χ2 distribution. This test allows to raise a flag concerning the integrity
of the sensor model. The hypotheses are in this case:

H0 :Sensor model integrate ⇒ r warn = 0
H1 :Sensor model not integrate ⇒ r warn = 1

(16)
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This test will be sensitive to both divergence in R̂ and r̂B, it can be seen as a
general health indicator of the estimation architecture.

In order to better handle transient perturbations, a low level confirmation of 1
second is implemented for all status flags (r norm, r outlier, and r warn). In prac-
tice this means trusting the gyroscope during a cool-down period after a perturbation
has disappeared (or has drowned in the measurement noise).

4.2 Data consolidation and integrity check blocks: ”Data
Consolid.” and ”Integrity check”

The sensor data fed to the attitude estimator is the best available data as per the status
flags defined above. In short, if the estimated sensor output is considered compro-
mised then the measurement is used, and vice versa if the sensor model is unreliable.
We denote the consolidated measurement rc. Furthermore, the estimation integrity
block assigns the appropriate status to a consolidated sensor data rc considering
the flags raised by the sensor estimation blocks. The signal status output is called
r status and has two possible states:

r status = 0 : rc NOT OK for attitude update

r status = 1 : rc OK for attitude update
(17)

A summary of the data consolidation and integrity logic is given in Table 1.

Table 1 Sensor data consolidation from status booleans

r outlier r warn r norm rc = r status Fault description

0 0 0 rm 1 Nominal, fault-free
1 0 0 −− 0 Small measurement disturbance
0 1 0 rm 1 R̂ not integrate
1 1 0 rm 1 R̂ or r̂B not integrate
0 0 1 r̂B 1 rm not integrate
1 0 1 −− 0 rm or r̂B not integrate
0 1 1 −− 0 R̂, rm, or r̂B not integrate
1 1 1 −− 0 - — — -

The acceleration status is denoted a status and the magnetic field status m status,
and the consolidated sensor data ac and mc respectively.
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4.3 Fault tolerant Attitude filter block: ”Attitude filter NL-KF”

The role of the attitude filter is to calculate an estimate of the attitude using the
consolidated sensor data. The prediction step is calculated at every new gyroscope
measurement, and the correction step depends on the status of the vector measure-
ments as calculated by Section 4.2.

4.3.1 State prediction

The attitude filter is based on the quaternion kinematics in equation (4), we also
estimate the gyroscope bias bω using a saturated bias model. This yields the discrete
state prediction:

q̂+
k+1 = q̂k +

1
2

Ω
(
ωm− b̂ω,k

)
∆ t q̂k

b̂+
ω,k+1 = b̂ω,k− kAW

(
b̂ω,k− sat

(
b̂ω,k,bω

))
∆ t

(18)

where kAW ∈ [0, 1] is the bias anti-windup gain and bω the maximum admissible
bias. The covariance is propagated as per equation 6, with the matrices Fk and Qk
defined by:

Fk =

I + 1
2 Ω
(
ωm− b̂ω,k

)
∆ tq̂k

∂ q̂+k+1
∂ b̂ω,k

0
[
1− ∆ t

τb
(1−Neq)

]2


Qk =

( ∂ q̂+k+1
∂ωm

)[
0 0
0 Vω

](
∂ q̂+k+1
∂ωm

)T

0

0 ∆ t Vbω


(19)

The covariance matrices Vω and Vbω
are diagonal and given by the noise power

and rate random walk of the gyroscope respectively. The gain Neq ∈ [0, 1] is called
the equivalent stochastic gain and results from a stochastic linearisation of the bias
saturation. This gives a behaviour similar to an unscented Kalman filter. The correc-
tion step is divided into a correction of the inclination and of the heading estimation
performed sequentially.

4.3.2 State correction

The additive update of the EKF is unfit for quaternion update since the correction
loses its physical meaning. An alternative is to use a multiplicative extended Kalman
filter (MEKF) where the corrected quaternion remains a rotation [17]. We can gen-
eralise the MEKF correction as a nonlinear function of the predicted quaternion and
the measurements, i.e:
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q̂k+1 = g
(
q̂+

k+1, rc,k+1
)

(20)

The associated covariance update is then:

P̂k+1 = Gx̂+k+1
P̂+

k+1GT
x̂+k+1

+Gyk+1Wk+1GT
yk+1

with Gx̂+k+1
=

∂g
∂ x̂+k+1

, Gyk+1 =
∂g

∂rc,k+1
.

(21)

We note that this covariance update using Joseph’s form gives no guarantee of a
decreased covariance, although it preserves its positive semi-definite form. A filter
using this kind of correction should not be classified as an EKF, but rather as a
nonlinear Kalman filter (NL-KF), since its gain does not depend on the linearisation
of the measurement equation.

We also note that the bias must be updated separately since the correlation due to
the Kalman gain is artificially set to zero when correcting the quaternion with (20).

The state correction of the attitude filter is conditionalised by the status variables
a status and m status calculated by the ”Integrity check” block. The state correc-
tion is done as per the following sequential procedure (the covariance is updated
accordingly at each step using (21)):

– Set the corrected state to the predicted state: q̂k+1 = q̂+
k+1, b̂k+1 = b̂+

k+1
– if a status = 1: Inclination and bias correction (bωx , bωy ) with ac
• q̂k+1 = q̂k+1⊗δq(α, û) (q̂k+1, ac, kα)

•
(

b̂ω,x

b̂ω,y

)
k+1

=

(
b̂ω,x

b̂ω,y

)
k+1

+

(
kp u1
kq u2

)
δα

– if m status = 1: Heading and bias correction (bωz ) with mc
• q̂k+1 = q̂k+1⊗δq(ψ,e3)

(
q̂k+1, mc, kψ

)
• b̂ω,z,k+1 = b̂ω,z,k+1 + kr δψ

The gains kp, kq, kr, kα , and kψ are all ∈ [0, 1] and are chosen to fix a first order
response time. The procedures for calculating δα , δψ , δq(ψ,e3), and δq(α, û) are
given by the following calculations:
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Inclination correction:

Inclination axis

û , Ker
([

eT
3 R̂
eT

3

])
= (u1, u2, 0)T

Estimated inclination

cos α̂ = eT
3 R̂T e3

sin α̂ =−ûT (e3× R̂T e3
)

R(α̂, û) = I + sin α̂ û×+(1− cos α̂) û2
×

Inclination error measurement

ym , Rα̂, û
ac

[||ac||
δα = atan2

(
ûT (e3×ym) , eT

3 ym
)

Inclination correction angle

∆α = kα δα

Correction quaternion

δq(α, û) = (cos(∆α/2), û sin(∆α/2))T

Heading correction:

Magnetic error vector

y1 = mT
re f
(
R̂mB× e3

)
y2 =

(
mre f × e3

)T (R̂mB× e3
)

y , (y1, y2)

Heading error angle

s =
y1

||y||
= sin(δψ)

c =
y2

||y||
= cos(δψ)

δψ = atan2(s, c)

Heading correction angle

∆ψ = kψ δψ

Correction quaternion
ˆδqψ = (cos(∆ψ/2), e3 sin(∆ψ/2))T

The rotation vector û is by definition ⊥ e3, therefore the inclination correction
will not impact the heading correction and vice versa.

5 Architecture tuning

The attitude filter was configured to have a (3τ) response time of ∼10s in roll and
pitch, and ∼10s in yaw. The gyroscope bias response times were set to 100s , the
bias saturation was set to 0.01rad/s , and the anti-windup gain was tuned to 0.025s ·
The sensor performance models’ response times were set to 10s in both the acceler-
ation and magnetic field estimators.

The statistical tests of the fault detection were all set to a false alarm rate cor-
responding to 3σ . The false alarm rate practically means a trade off between trust-
ing the gyroscope or the vector measurements due to the gated attitude corrections,
much like the measurement covariances in a standard EKF.
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6 Experimental results

A series of flight tests with a MikroKopter MK7 quadrotor [18] drone, carrying
a Pixhawk 4 module [19] providing accelerometer, gyroscope, and magnetometer
measurements, plus an on-board attitude estimation. A ground truth of the quadrotor
attitude was obtained via an optical tracking system [20].

MK7

Optitrack cameras

Current Loop

Fig. 2 The experimental set-up with the quadrotor, the current loop, and the optical tracking system
visible.

In order to obtain controllable magnetic disturbances, a home made current loop
fixed to a wooden armature was placed in the flight arena. We can then easily ac-
tivate or deactivate a known magnetic disturbance using this current loop. In the
following scenarios, a current of 15A was run through the loop. The loop itself
was a circle of ≈ 2m in diameter consisting of 2.5mm2 copper wire run 15 rounds
around the armature. This gave a maximum field strength of ≈ 2G , as can be seen
in the magnetometer readings. Three different trajectories were tested to highlight
the different problems and solutions.

1. Cross-trajectory with high accelerations, no magnetic disturbance present.
2. Slow horizontal and vertical approaches into the magnetic disturbance followed

by slow distancing.
3. Cross trajectory with high accelerations in and out of the magnetic disturbance.
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Three filters are shown for each scenario: the onboard PX4 estimator (PX4); the
decoupled nonlinear attitude filter in section 4.3 (DEC-KF); the entire fault tolerant
architecture (FT-KF) in section 4. To avoid long transients in the replayed data, the
gyroscope bias estimates were initialised with the slope of the error between the
purely integrated gyroscopes and the attitude given by the tracking system.

The onboard estimation was calculated at 250Hz, but due to packet-losses when
saving the data, the recordings of the IMU and magnetometer did not have a
consistent frequency. The average sampling frequency of the replayed data was
∼ 190Hz for the IMU (gyroscope and accelerometer) and ∼ 90Hz for the magne-
tometer.

6.1 Cross-trajectory

Given the inertial measurements in Figs. 3 and 4, Fig. 5 shows the inclination- and
heading error and Table 4 the associated statistics. The integrity booleans are shown
in Fig. 6.

Fig. 3 Cross trajectory: Accelerometer (am) vs gravity in body frame (gB)

Table 2 Cross trajectory: Estimation error statistics

max(εψ ) mean(εψ ) std(εψ ) max(εα ) mean(εα ) std(εα )

PX4 14.18 9.73 3.67 5.00 2.89 0.39
NL-KF 16.16 8.98 4.04 8.06 2.34 1.35
FT-KF 18.28 10.22 4.43 7.67 2.27 1.34
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Fig. 4 Cross trajectory: Magnetometer (mm) vs magnetic reference in body frame (mB)

Fig. 5 Cross trajectory: Inclination (α) and heading (ψ) errors

In this scenario, mainly transverse accelerations disturb the IMU. In the in-
tegrity booleans in Fig. 6 we clearly see the detection of the acceleration outliers
(a outlier). The few magnetic disturbance detections (m outlier) are likely due to
the inhomogeneity of the magnetic field in the flight arena (armed concrete floor,
etc.). The statistics show no major difference in the three estimators apart from the
higher covariance in inclination due to a lower sampling rate in the replayed data
compared to the onboard estimation.

6.2 Slow approach of magnetic disturbance

Given the inertial measurements in Figs. 7 and 8, Fig. 9 shows the inclination- and
heading error, Fig. 10 the integrity booleans, and Table 3 the associated statistics.
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Fig. 6 Cross trajectory: Integrity booleans

Fig. 7 Slow approach trajectory with magnetic disturbance: Accelerometer (am) vs gravity in body
frame (gB)

Table 3 Slow approach trajectory: Estimation error statistics

max(εψ ) mean(εψ ) std(εψ ) max(εα ) mean(εα ) std(εα )

PX4 79.40 17.76 22.77 3.40 2.01 0.55
NL-KF 154.31 49.14 54.21 6.71 2.24 1.28
FT-KF 9.92 2.59 2.69 6.73 2.24 1.29

The FT-KF manages the magnetic perturbations well. In comparison to the PX4
which works on measurement rejection through innovation testing only, the FT-KF
manages to reject even the disturbance between∼ 120s and∼ 180s, and reconverge
as it disappears. We also note in this case the exponential convergence of the DEC-
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Fig. 8 Slow approach trajectory with magnetic disturbance: Magnetometer (mm) vs magnetic ref-
erence in body frame (mB)

Fig. 9 Slow approach trajectory with magnetic disturbance: Inclination (α) and heading (ψ) errors

KF in yaw. The NL-KF works well in α since only am is used to correct the inclina-
tion. It does not work in the heading estimation since it uses a measurement (mm)
which is heavily biased (and no detector is used, as for the FT-KF). We also note
the reconvergence as soon as the disturbance disappears (with the chosen response
time of 10 seconds). The slight increase in heading error for the FT-KF around 170s
is due to the missed outlier detection seen in Fig. 10. This scenario also shows a
bunch of detections in the accelerometer data, this corresponds to the peaks in am,y
between 30-120s and seems to be due to ground and wall effects.
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Fig. 10 Slow approach trajectory with magnetic disturbance: Integrity booleans

6.3 Cross-trajectory with magnetic disturbance

Given the inertial measurements in Figs. 11 and 12, Fig. 13 shows the inclination-
and heading error, Fig. 14 the integrity booleans, and Table 4 the associated statis-
tics.

Fig. 11 Cross trajectory with magnetic disturbance: Accelerometer (am) vs gravity in body frame
(gB)

In this case we see that the FT-KF deviates less than the PX4 in yaw, although the
error in both cases remains modest. This is likely due to the measurement rejection
implemented in the PX4 which works well for transient disturbances. We clearly
see the interest of the detection and rejection stage of the fault tolerant FT-KF as
compared to the decoupled-only NL-KF. Compared to the PX4, the precision in
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Fig. 12 Cross trajectory with magnetic disturbance: Magnetometer (mm) vs magnetic reference in
body frame (mB)

Fig. 13 Cross trajectory with magnetic disturbance: Error angles for cross-trajectory with magnetic
disturbance

Table 4 Cross trajectory with magnetic disturbance: Estimation error statistics

max(εψ ) mean(εψ ) std(εψ ) max(εα ) mean(εα ) std(εα )

PX4 6.45 3.08 1.64 3.74 1.65 0.33
NL-KF 50.72 17.22 14.36 8.16 2.31 1.36
FT-KF 5.03 2.11 0.78 4.98 2.18 0.86

inclination is worse for the FT-KF and DEC-KF due to the lower sampling frequency
and possibly missing data during the dynamic parts.



Experimental study of an attitude estimator with measurement disturbance rejection 19

Fig. 14 Cross trajectory with magnetic disturbance: Integrity booleans

7 Conclusion

We have presented a fault tolerant attitude estimation architecture for handling large
inertial accelerations and time varying magnetic disturbances. Experimental results
using low-cost MEMS sensors confirm the presumed decoupling and disturbance
rejection properties.

The developed estimator consists of two key elements:

• A prediction procedure that assures a realistic estimation of gyroscope biases and
their associated uncertainties.

• A correction procedure that assures a decoupling of the information, given by
the accelerometer and the magnetometer, used to correct the inclination and the
heading. This decoupling also allows sensor faults to be easily localised.

Furthermore we show the interest of a detection stage to assure the integrity of
the heading when subject to magnetic disturbances. The equivalent detection for
the inclination is arguably less important, but this is probably due to the limited
high accelerations we have tested because of the limited test area. Same tests in
an open space allowing higher accelerations disturbances would probably be more
demonstrative. We see that the proposed attitude filter (NL-KF) re-converges even
at large attitude errors. This is seemingly not the case for the EKF based PX4.

The architecture presented here uses a simple one-step χ2-test for fault detection.
We see that this test is not powerful enough for slowly growing or low amplitude
faults. The detection stage could be improved by using more sophisticated methods
such as (χ2-)CUSUM or GLR tests ([21], [22]). Another axis of improvement would
be to adapt the measurement covariances to decrease the rate of false alarm while
keeping the rate of missed detections.
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