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Abstract A state constrained control design problem is addressed in this article via
Lyapunov techniques. We show that for systems in a special linear strict feedback
form, it is possible to impose constraints on states unmatched with the control using
a backstepping technique while achieving the stabilization objective. Initially in this
article, we formalize for linear systems an existing procedure which uses backstep-
ping control to constrain partial states of a spacecraft’s attitude dynamics [SB15].
We further show that an extension of the method allows us to constrain all the states
of the system simultaneously. In contrast to existing methods using Barrier Lya-
punov functions, our controller does not result in large control actions close to the
boundary of the convex constraint. Sample simulations are shown to illustrate our
theoretical results.

1 Introduction

Most practical controlled dynamical systems require implementation of control and
state magnitude constraints. For example, in mechanical and chemical applications
involving pumps or valves, the capacities and range of positions are finite and sub-
ject to design. Control algorithms based on classical constraint free design that
exceed these limits are therefore rendered useless and new techniques need to be
evolved.

Constrained stabilization can be implemented using control design for stabiliz-
able linear systems, whose domain of attraction can be approximated by a polyhe-
dron [BM96]. Related research on stabilization for semi-globally or globally con-
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strained systems also exists [SSSS]. Since these formulations can be rarely imple-
mented online, we aim to generate a simpler law which can achieve results with
considerably less computational effort.

More recently it has been shown that it is possible to implement state con-
strained control using ‘Barrier’ Lyapunov functions [TG09, NMJ05] for systems
in strict feedback form by using backstepping based design. Also, control barrier
functions (CBF) and control Lyapunov functions (CLF) can be combined to en-
force state-dependent constraints [NS16, AXGT17]. Asymptotic tracking can be
achieved without violation of the constraints with a soft condition on the initial out-
put [TGT09]. However, the corresponding feasibility conditions, which are obtained
by solving a static optimization problem, can be highly restrictive with respect to the
initial states and control parameters. Sample applications include spacecraft reori-
entation in the presence of attitude constraints by utilizing convex parameterizations
[LM11, LM12]. However, the designed control input is typically very high close to
the constraint boundary due to the nature of Barrier Lyapunov functions which map
a compact constraint set to [0,∞).

In this article we propose standard backstepping techniques as a means of con-
straining a partial set of states and further generalize the method to constrain all
the states of a linear system in a special feedback form. We therefore avoid Bar-
rier Lyapunov constructions and demonstrate lower control efforts in comparative
simulations. The article is organized in four sections. In section 2, state constrained
control is designed for constraints on unmatched states. This is then extended to
full state constraints in section 3. Simulation studies are presented in section 4 for
comparison with existing results.

Notation:

• A−R is the right-inverse of matrix A.
• Similarly A−L denotes the left-inverse of A.
• |µ| is the absolute value of the scalar µ .
• || · || refers to the 2-norm on vectors and the corresponding induced norm on

matrices.
• λmin(A) and λmax(A) denote the smallest and largest eigenvalues of a real square

matrix A respectively.
• In ∈ Rn×n denotes the identity matrix of dimension n×n.

1.1 Preliminaries:

We employ backstepping tools which can be implemented for control design for
autonomous, nonlinear systems in the following strict-feedback form [KKK95, sec.
2.3.1], [Kha02, pg. 595]:
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ẋ = f (x)+g(x)ξ1

ξ̇1 = f1(x,ξ1)+g1(x,ξ1)ξ2

...

ξ̇k = fk(x,ξ1, . . . ,ξk)+gk(x,ξ1, . . . ,ξk)u

where x ∈ Rn and ξ1, . . . ,ξk are scalars and f (0) = 0. It is typically assumed that
there exists a continuous feedback control law corresponding to ξ1 as the control
input,

ξ1,desired = α(x),α(0) = 0

and a smooth, positive definite, radially unbounded function V : Rn→ R such that

∂V
∂x

(x)[ f (x)+g(x)α(x)]≤−W (x)≤ 0,∀x ∈ Rn

where W : Rn→ R is positive definite.
Inspired by the above formulation, we now introduce a linear block strict-

feedback form for autonomous linear systems as below,

ẋ = Ax+By, x(0) = x0,

ẏ =Cx+Dy+Eu, y(0) = y0
(1)

where x∈Rn, y∈Rm are the states of the system with u∈Rp being the control. The
quintuple (A,B,C,D,E) are real matrices of appropriate dimensions. (1) can also be
written in a block strict-feedback form as follows,[

ẋ
ẏ

]
=

[
A 0
C D

][
x
y

]
+

[
B 0
0 E

][
y
u

]
(2)

2 Constraints on unmatched states

The control objective of the current section is to constrain the control unmatched
states x in dynamics (1) while achieving stabilization of all states to the origin.

We generalize a previously implemented procedure on spacecraft attitude dy-
namics [SB15] to systems in linear strict feedback form (1) to achieve the afore-
mentioned control objectives.

Theorem 1. Consider the system dynamics (1) along with the assumption that (A,B)
is a stabilizable pair and E has a right inverse, denoted E−R. The system is uni-
formly exponentially stabilized at the origin with the control law given by,

u = E−R[−2σBT PT x− ((C−DK +KÃ)x+(D+KB)ỹ)−Lỹ] (3)
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where,

i. ỹ := y+Kx is a transformation of the control matched states with K ∈ Rm×n

being a stabilizing gain matrix,
ii. L ∈ Rm×m is a symmetric positive definite matrix and σ > 0,

iii. P ∈ Rn×n is the symmetric positive definite solution of the Lyapunov equation
ÃT P+PÃ = −Q with Ã = A−BK and Q being a symmetric positive definite
matrix.

Furthermore, the control law (3) guarantees that the states x remain constrained as,
‖x‖ ≤ α for some α > 0 satisfying λmin(P)α2 > x(0)T Px(0) if the gain σ is chosen
as,

σ ≥ ỹ(0)T ỹ(0)
2(λmin(P)α2− x(0)T Px(0))

(4)

Proof. We utilize a backstepping strategy to stabilize the dynamics (1) at the origin.
Assuming y as the virtual control for the x-subsystem in (1), we can design a desired
stabilizing virtual feedback yd = −Kx, where the gain matrix K is chosen so as
to render Ã := (A− BK) Hurwitz. We now define, ỹ := y− yd . The transformed
dynamics can now be written as,

ẋ = Ãx+Bỹ
˙̃y = (C−DK +KÃ)x+(D+KB)ỹ+Eu.

(5)

In order to complete the stability proof, consider a positive definite candidate
Lyapunov function of the form,

V = xT Px+
1

2σ
ỹT ỹ > 0

The directional derivative of V along the dynamics (5) is,

V̇ = xT (ÃT P+PÃ)x+ ỹT (BT P+BT PT )x+
ỹT

σ
˙̃y

Upon substituting the controller satisfying (3) in dynamics (5), the cross terms in V̇
are canceled and we obtain a negative definite V̇ :

V̇ =−xT Qx− 1
σ

ỹT Lỹ < 0

Therefore, by the Lyapunov theorem [Vid02, pg. 171] we can claim uniform expo-
nential stability of the origin.

The choice of σ as in (4) ensures that,

x(0)T Px(0)+
1

2σ
ỹ(0)T ỹ(0)≤ λmin(P)α2

Further, employing the fact that V (t)<V (0) (V̇ < 0) we obtain,



Backstepping control for state constrained systems 5

x(t)T Px(t)+
1

2σ
ỹ(t)T ỹ(t)≤ λmin(P)α2

and hence, x(t)T Px(t)≤ λmin(P)α2. The following inequality on quadratic forms,

λmin(P)||x(t)||2 ≤x(t)T Px(t)≤ λmax(P)||x(t)||2 (6)

yields,

λmin(P)||x(t)||2 ≤ λmin(P)α2

=⇒ ||x(t)|| ≤ α

which guarantees the required bounds on states x.
ut

Remark 1. In typical applications, the state constraint α is prescribed by physical
limitations and therefore the need to satisfy a condition of the form λmin(P)α2 >
x(0)T Px(0) seems rather stringent. However, given actual constraint on the state,
ᾱ , suppose we choose an ε > 0 such that ᾱ = (ᾱ − ε)

√
λmax(P)/λmin(P). Now

if, ‖x(0)‖ < (ᾱ − ε), then x(0)T Px(0) < λmin(P)ᾱ2. This requirement, in essence,
restricts the initial conditions to a proper subset of the constraint set on the states x.
It is evident that ε → 0 as P→ cIn for c ∈ R.

Remark 2. The scalar gain σ directly influences the control magnitude in (3). It is
therefore paramount to minimize the lower bound on σ in (4). This is achieved by
solving the following constrained optimization problem to prescribe the feedback
gain K.

min
K∈Rm×n

[y(0)+Kx(0)]T [y(0)+Kx(0)]

such that, Re(λ (A−BK))< 0.

This ability to reduce the gain σ distinguishes the current approach from Barrier
Lyapunov methods which lead to large control effort close to the constraint bound-
ary.

3 Constraints on all states

The problem of constraining all the states of a system can be reformulated as an un-
matched state constraint problem by augmenting the system with additional states.
Subsequently, theorem 1 can be directly applied to the augmented system.

Theorem 2. Consider the linear time-invariant system below:

ẋ = Ax+Bu, x(0) = x0 (7)
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with x ∈ Rn, u ∈ Rm and (A,B) stabilizable. Then a dynamic control law defined as
below:

u̇ =Cx+Du+Ev, u(0) = 0 (8)

where E is an arbitrary right invertible matrix and v ∈ Rp is defined as,

v = E−R[−2σBT PT x− ((C−DK +KÃ)x+(D+KB)ũ)−Lũ] (9)

with,

i. ũ = u+Kx,
ii. L ∈ Rm×m is a symmetric positive definite matrix and σ > 0,

iii. P ∈ Rn×n is the symmetric positive definite solution of the Lyapunov equation
ÃT P+PÃ = −Q with Ã = A−BK and Q being a symmetric positive definite
matrix.

guarantees global exponential stability of (x,u) = (0,0). Furthermore, the control
law (8)-(9) guarantees that the states x remain constrained as, ‖x‖ ≤ α for some
α > 0 satisfying λmin(P)α2 > x(0)T Px(0) if the gain σ is chosen as,

σ ≥ ũ(0)T ũ(0)
2(λmin(P)α2− x(0)T Px(0))

Proof. The augmented dynamics (7)-(8) have precisely the same linear strict block
feedback form considered in theorem 1. Therefore a direct application of theorem 1
proves the claims above. ut

4 Simulations

In this section we look at some numerical examples to illustrate the feedback strate-
gies previously presented.

4.1 Constraints on unmatched states

As an example consider the third order integrator dynamics with x := [x1,x2]
T and

y := x3 in (1), and the following system matrices:

A =

[
0 1
0 0

]
,B =

[
0
1

]
,C = [0,0],D = [0],E = [1]

The initial conditions and constraints are taken to be,

α = 12

x(0) = [11,2]T , y(0) =−4,



Backstepping control for state constrained systems 7

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t

0

5

10

||x
||

α

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t

0

2

4

||y
||

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t

0

5

||u
||

Fig. 1 Constrained dynamics of unmatched states

In order to make all the eigenvalues of P nearly equal and reduce the lower bound
on σ , we minimize the weighted average of the ratio of the maximum eigenvalue to

the minimum eigenvalue :
λmax(P)
λmin(P)

and [y(0)+Kx(0)]T [y(0)+Kx(0)]. A Genetic

Algorithm (GA) is used which randomly initializes the elements of Q and K and
then uses evolutionary operators like selection, crossover and mutation to improve
performance of the objective function. In this evolution process, Q has to be positive
definite and Ã = A−BK is required to be Hurwitz. The GA generated values are:

Q =−
[
−50.55 217.47
217.47 −935.46

]
K = [0.638,0.639]

Further, the gain L = 1, and the selected value of σ computed using (4) is 1.027e−3.
As expected by theorem 1 we observe in fig. 1 that the system is exponentially

stabilized to the origin and ||x|| remains bounded by α as expected while maintain-
ing reasonable control magnitudes.
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Fig. 2 Constrained dynamics using barrier Lyapunov function

Comparison

We compare our results with the corresponding Barrier Lyapunov based control de-
sign. For the system (5), we consider a positive definite candidate Lyapunov (Bar-
rier) function of the form,

V = xT Px log(
tol

tol− xT Px
)+

1
2σ

ỹT ỹ > 0

where tol = λmin(P)α2. It is evident that the above function maps a compact do-
main in one argument {x ∈ Rn|xT Px ≤ tol}×Rm to [0,∞) as required for Barrier
functions [NS16]. Upon substituting the following controller,

u = E−R[−((C−DK +KÃ)x+(D+KB)ỹ)−Lỹ

−2σ

(
xT Px

tol− xT Px
+ log(

tol
tol− xT Px

)

)
BT PT x]

in dynamics (5), we obtain a negative definite directional derivative of V ,

V̇ =−xT Qx
(

xT Px
tol− xT Px

+ log(
tol

tol− xT Px
)

)
− 1

σ
ỹT Lỹ
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Therefore, by the Lyapunov theorem we can claim uniform exponential stability of
the origin. Moreover, since the argument of the logarithm has to be positive, the
unmatched states will be bounded as required.

Simulations are carried out for an identical third integrator system with the same
initial conditions and parameters. The results can be seen in fig. 2. We observe that
thought the states behave similar to our controller, the control effort is an order
of magnitude larger with the Barrier function based controller as conjectured. The
backstepping controller proposed here allows minimization of the control gain σ

by reducing the contribution of unconstrained initial conditions as much as possible
by solving a one-time constrained optimization problem to choose gain K. These
comparative results are therefore not an isolated phenomenon and have been tested
in a large number of examples.

4.2 Constraints on all states

For this case consider a second order integrator system with x = [x1,x2]
T with u as

the dynamic controller designed as in (8)-(9) with the following system matrices:

A =

[
0 1
0 0

]
,B =

[
0
1

]
,C = [0,0],D = [0],E = [1]

The initial conditions and constraints are taken to be,

α = 12

x(0) = [11,2]T , u(0) = 0

Using similar optimization techniques as in section 4.1 we design,

Q =−
[
−8.36 33.11
33.11 −131.07

]
K = [0.440,0.776]

Also, L = 1 and the selected value of σ is 0.1015.
As expected from theorem 2 we observe in fig. 3 that the system is exponentially

stablilized at the origin and ||x|| remains bounded by α as expected.

5 Conclusions

We design feedback controllers to constrain some or all states of a dynamical sys-
tem in a special linear strict feedback form. A backstepping approach is employed
to design the feedback law and a constrained optimization problem is solved at ini-
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Fig. 3 Full state constrained dynamics

tial time to choose the control gains. This ensures that the states satisfy bounds
imposed by the application while keeping the control at reasonable values unlike
Barrier Lyapunov constructions in literature. This is also illustrated through exem-
plary simulations.

References

AXGT17. Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada. Control barrier
function based quadratic programs for safety critical systems. IEEE Transactions on
Automatic Control, 62(8):3861–3876, 2017.

BM96. Franco Blanchini and Stefano Miani. Constrained stabilization of continuous-time lin-
ear systems. Systems & control letters, 28(2):95–102, 1996.

Kha02. H.K. Khalil. Nonlinear Systems. Pearson Education. Prentice Hall, 2002.
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