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Abstract This paper presents a continuous low-thrust control algorithm coupled
with the decentralized navigation filter, suitable for distributed space systems re-
configuration. The dynamics of the satellites, representative of J2-perturbed ellipti-
cal orbits, is expressed in terms of the relative orbital elements (ROEs). Since the
relative orbit determination measurements are typically referred to the Cartesian
state of each satellite, a linear mapping between the set of ROE and the Carte-
sian coordinates expressed in the local-vertical-local-horizontal (LVLH) reference
frame is derived. The desired set of ROE at each time-step is determined based
on the contribution of counter-acting Artificial Potential Fields (APFs) defined in
the ROE space. A feedback control is designed to track the desired state, whose
stability is analysed using Lyapunov theory. The guidance, navigation and control
algorithms are tested in a high-fidelity numerical orbit propagator for two different
operational scenarios, one of which is accurately chosen to show a representative
collision avoidance manoeuvre. The results demonstrate the effectiveness of the al-
gorithm for reconfiguration manoeuvres involving relative distances ∼ 102 m with
limited fuel consumption and constrained available thrust (≤ 1mN). The proposed
algorithm enhances the flexibility of traditional reconfiguration with collision avoid-
ance strategies respecting the robustness requirement and the computational effort.
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1 Introduction

Distributed space systems, composed of several microsatellites flying in formation,
are becoming increasingly attractive due to the resulting enhancement in robustness
of the overall mission architecture while reducing the cost of each platform and the
time to flight. The Guidance, Navigation & Control (GNC) subsystem of the frac-
tionated space system is required to drive and keep the microsatellites formation
towards multiple different configurations, which are imposed by the mission objec-
tives. A high-level of autonomy, and consequently increased complexity, is required
in such mission concept, in which the satellites are expected to react autonomously
to unforeseen events. In particular, the collision avoidance task is critical in forma-
tion reconfiguration especially when the number of satellites increases. The GNC
algorithms can be implemented following a centralized, decentralized or distributed
architecture. The centralized architecture assumes there is a master spacecraft that
processes the information coming from all the satellites, computes the guidance and
control outcome and sends back commands to each spacecraft [5]. Decentralized
GNC implements identical algorithms on-board each satellite, which is capable of
computing its own action based solely on on-board information [10]. Finally, dis-
tributed systems relies on inter-satellite links: indeed, each satellite processes its
own information and at least one coming from another agent of the system [2]. On
one hand, the centralized architecture presents two different issues: first, the pres-
ence of a master spacecraft implies a single failure point; the outcome of the central
on-board calculation needs to be circulated among all the agents of the system, in-
serting complexity on the communication link between the master and the other
spacecrafts. The decentralized approach, on the other hand, solves the failure point
aspect but lacks of a system perception, as each satellite is limited to its own data.
For this reason, the selected architecture for this paper is distributed, which aims
at solving the aforementioned issues of the centralized and decentralized approach.
Even though formation flying missions are not so numerous, in literature [2] [5]
the path-planning is an optimum problem solved for the trajectory of each satellite
taking into account the collision hazard constraint of the constructed trajectories.
Both centralized and distributed architecture have been studied [2]. Nevertheless,
this might become computationally demanding as the number of satellites increases,
especially when on board computational resources are very limited. Di Mauro et al.
[5] presented an optimal continuous control law for satellite reconfiguration, solved
by Mixed Linear Programming and Particle Swarm Optimization. Such approach is
hardly fitting the constraints imposed by the micro-platforms and does not take into
account any collision avoidance strategy. The collision constraint has been taken
into account in the optimal control strategy presented by Chu [2], by convexifying
the constraint solved by nonlinear programming strategy. Nevertheless, the navi-
gation algorithm is not integrated nor developed. Chernick et al. [1] presented an
optimal control based on impulsive maneuver leveraging Keplerian dynamics to de-
termine optimal, predictable maneuvering schemes, without taking into account the
collision avoidance constraint. An impulsive strategy based on the state transition
matrix of the system is also presented by Vadali and Alfriend [15]. Schaub [11]
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presented a low-thrust feedback law based on orbital elements difference valid for
Cartesian J2-invariant orbits. Another formation control strategy for reconfigura-
tion is using the virtual-structure approach (VSA). Basically, the final configuration
is associated to a rigid frame in which the satellites are pre-assigned to a specific
place, which is tracked by each satellite’s control architecture. Ren et al. [10] pro-
posed a decentralized scheme for spacecraft Formation Flying using the VSA. Sev-
eral authors have partially solved the task of path-planning using behaviour-based
algorithms. Izzo [7] presented a behaviour-based algorithm, where the imposed de-
sired velocity is determined by a combination of counteracting task, such collision
avoidance and reference tracking. The Null-Space Based (NSB) behavioral control
concept is used by Schlanbusch [13] to cope with the dynamic collision avoidance
constraint, coupled with a sliding surface based controller. Similar to the behaviour-
based approach is the calculation of the artificial potential field to force the dy-
namics of the agents during the reconfiguration. Steindorf et al. [14] proposed a
guidance and control strategy based on the artificial potential field using relative
orbital elements. The authors include a passive collision avoidance strategy applica-
ble to satellite formations composed of two satellites. The relative elements adopted
in this paper are the same developed by D’Amico [3] and used also by Steindorf
[14]. The relative motion between spacecrafts flying in formation is typically recon-
structed by Cartesian measurement in the Hill frame. Hence, a linear mapping is de-
veloped to transform the Cartesian state to the relative orbital elements δ χ , and vice
versa. A similar approach was developed by Schaub [12], where the mean orbital
elements difference were used. The literature is still poor with respect to algorithms
that can be implemented in a distributed architecture with low computational power,
actively managing the collision avoidance constraint between more than two satel-
lites. As stated, this paper presents an autonomous formation reconfiguration GNC
algorithm based on artificial potential field, including a distributed active collision
avoidance based on repulsive potential contribution, suitable for microsatellite ap-
plications. A tracking feedback controller, based on Lyapunov theorem, guarantees
the artificial potential dynamics to be followed. The intended contributions of the
paper are:

• to propose a full GNC algorithm for spacecrafts formation reconfiguration, suit-
able for micro platforms implementation;

• to extend the application of the artificial potential field to dynamically control
multiple agents (≥ 2) assuring the collision avoidance constraint is respected;

• to develop a numerical tool to test and validate the full GNC algorithm.

The paper is structured as follows: the dynamical model employed and the coor-
dinates transformation are presented in section 2; in section 3 the full GNC archi-
tecture is detailed, with dedicated focus to the distributed guidance, navigation and
control algorithms. The numerical simulations and results are reported in section 4;
finally, in section 5, conclusions are drawn.
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2 Dynamical Model

The spacecraft formation dynamics is described using the relative orbital elements,
following the work done by D’Amico [3]. The following quasi-singular relative
orbital elements are adopted:

δ χ =



δa
δλ

δex
δey
δ ix
δ iy


=



a f−ar
ar

(M f +ω f )− (Mr +ωr)+(Ω f −Ωr)cos(ir)
e f cos(ω f )− er cos(ωr)
e f sin(ω f )− er sin(ωr)

i f − ir
(Ω f −Ωr)sin(ir)


(1)

where the subscript f stands for any follower spacecraft orbit, whereas the subscript
indicates the reference orbital elements. M is the mean anomaly, a the semimajor
axis, e the eccentricity, i the orbit inclination, ω the argument of perigee and Ω the
right ascension of the ascending node. It is important to remark that in this paper the
reference orbit is the same for the n spacecraft building up the formation. The benefit
of using such model is that, if the perturbations are neglected, the geometry of the
relative motion with respect to a reference orbit is uniquely determined by a set of
invariant relative orbital elements (ROE), except for the relative true anomaly, which
follows the Keplerian propagation. Indeed, the natural evolution of the dynamic
system can be described as:

˙δ χ = Ak ·δ χ (2)

where

Ak =


0

...

−1.5n
... 06×5

04×1
...

 (3)

Guffanti and Koenig [6][8] later expanded the model to a J2 perturbed dynamics.
The complete dynamical model can be expressed as:

˙δ χ = (Ak +AJ2) ·δ χ +Bu (4)

AJ2 =



0 0 0 0 0
− 7

2 (1+η)(3cos2 ir−1) 0 exGFP eyGFP −FS 0
7
2 eyQ 0 −4exeyGQ −(1+4Ge2

y)Q 5eyS 0
− 7

2 exQ 0 (1+4Ge2
x)Q 4exeyGQ −5exS 0

0 0 0 0 0 0
7
2 S 0 −4exGS −4eyGS 2T 0


(5)

where the terms in Eq. 5 are:
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k = γa
− 7

2
r η

−4, η =
√

1− e2
r , γ =

3
4

J2R2
e
√

µ, ex = er cosωr, ey = er sinωr

E = 1+η , G =
1

η2 , F = 4+3η , P = 3cos2 ir−1, Q = 5cos2 ir−1, S = sin2ir, T = sin2 ir

(6)
where J2 is the zonal harmonic coefficient 1.0826 · 10−3 for Earth, Re is the Earth
radius, µ = 3.986 ·1014m3s−2 is the Earth gravitational constant. The control matrix
is derived from Gauss Variational Equation (GVE) as in [11]:

B =
1

arnr



2
η

er sinνr
2
η
(1+ er cosνr) 0

− 2η2

1+er cosνr
0 0

ηr sinωr +νr η
(2+er cosνr)cos(ωr+νr)+ex

1+er cosνr

ηey
tan ir

sin(ωr+νr)
1+er cosνr

−ηr cosωr +νr η
(2+er cosνr)sin(ωr+νr)+ey

1+er cosνr

−ηex
tan ir

sin(ωr+νr)
1+er cosνr

0 0 η
cos(ωr+νr)
1+er cosνr

0 0 η
sin(ωr+νr)
1+er cosνr


(7)

where νr is the true anomaly.

2.1 Coordinates Transformation

The active collision avoidance maneuvers depend on the relative metric distance
between two agents. The relative distance is naturally expressed in the Carte-
sian Local-Vertical-Local-Horizontal (LVLH) reference frame. The mapping be-
tween the Hill X = [x y z ẋ ẏ ż] state to the ROE δ χ is required to process the
measurements and compute the guidance and control output. The transformation
matrices are derived by using the classical orbital elements difference ∆OE =
[∆a ∆M ∆ω ∆e ∆ i ∆Ω ] as follows:

JX
δ χ

=
∂X

∂∆OE
· ∂∆OE

∂δ χ
, Jδ χ

X =
∂δ χ

∂∆OE
· ∂∆OE

∂X
(8)

where a is the semimajor axis, M is the mean anomaly, ω the argument of perigee,
e the eccentricity, i the inclination and Ω the right ascension of the ascending node.
The first-order approximation of the mapping between the Hill state and classical
osculating orbital elements yields [3][9]:

x =
r
a

∆a−a · cosν∆e+
aesinν√

1− e2
∆M

y =
(

a+
r

1− e2

)
sinν∆e+

a2

r
η∆M+ r∆ω + r cos i∆Ω

z = r sin(ν +ω)∆ i− r sin icos(ν +ω)∆Ω

(9)
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Differentiating Eq. 9 the full transformation is obtained:

ẋ =− nesinν

2
√

1− e2
∆a+nsinν

√
1− e2

(
a3

r2

)
∆e+ encosν

a3

r2 ∆M

ẏ =

n
√

1− e2

(
1+

r
a(1− e2)

)(
a3

r2

)
cosν +

aensin2
ν

(1− e2)
3
2

∆e− ensinν
a3

r2 ∆M+
aensinν√

1− e2
∆ω

ż =
an√

1− e2

(
sin i
[

sin(ν +ω)+ esinω

]
∆Ω +

[
cos(ν +ω)+ ecosω

]
∆ i
)

(10)
Combining Eq. 9 and 10 the transformation matrix between Hill state X and clas-
sical orbital elements ∆OE, namely ∂X

∂∆OE and its inverse in Eq. 8. To formulate
the complete transformation the Jacobian of the transformation between classical
orbital elements and relative orbital elements δ χ is required. Such transformation is
obtained from the definition of δ χ for ∆OE→ 0:

∂∆OE
∂δ χ

=



a 0 0 0 0 0
0 1 sinω

e − cosω

e 0 cos i
sin i

0 0 − sinω

e
cosω

e 0 0
0 0 cosω sinω 0 0
0 0 0 0 1 0
0 0 0 0 0 sin i


,

∂δ χ

∂∆OE
=



1
a 0 0 0 0 0
0 1 1 0 0 cos i
0 0 −esinω cosω 0 0
0 0 ecosω sinω 0 0
0 0 0 0 1 0
0 0 0 0 0 sin i


(11)

3 Distributed Architecture

The entire Guidance, Navigation & Control is designed according to a distributed ar-
chitecture, in which each satellite processes the information coming from its neigh-
bouring satellite. Each satellite processes on-board the information on its state to-
gether with the relative measurements of its neighbour. As mentioned, the collision
avoidance maneuver is calculated on-board based on the relative distance between
satellites. This is done on-board and actively calculated as the satellites are moving,
which is different from what has been done in literature. The implementation of the
proposed algorithm is independent from the number of satellites in the system. In
the following the approach adopted for each GNC block, Navigation, Guidance and
then Control, is detailed.
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3.1 Decentralized Navigation

The navigation strategy exploits a decentralized architecture. In this way, the highly
parallel nature of this solution allows for a much faster implementation, especially
with a high number of satellites in the formation. The navigation algorithm is the
same for all the satellites in the formation. Each satellite is assumed to be able to
retrieve its relative state with respect to the reference orbit. This can be achieved ex-
ploiting the information from cameras or by radio frequency (RF) communication.
In this work, we assume to use a relative RF communication as in Prisma mission
did[4]. The output of the RF signal analysis is directly the relative position vector
between the two spacecrafts. This measurement is fed to the navigation filter. We
implemented a standard Kalman Filter (KF) to estimate the relative position and ve-
locity between each satellite and a reference satellite of the formation that is the only
one able to estimate its absolute state, which can be performed by any satellite of
the formation. The algorithm is implemented identically for each spacecraft in the
formation and it is independent of the other satellites. The particular formulation
of the dynamics with ROE allows to use a linear estimator. This is very important
to limit the computational effort while preserving the estimation performance. It
is worth underlying that the state vector of the filter is composed by the Hill state
X = [x y z ẋ ẏ ż] and not ROE. This strongly simplifies the tuning of the filter but
implies an additional conversion downstream of the navigation block to correctly
execute the guidance algorithms.

3.2 Distributed Guidance

The distributed guidance algorithm processes locally all the state estimations of the
satellite formation members. The leader satellite owns a full knowledge of the sys-
tem, hence relative distances between followers are available. The guidance strategy
relies on artificial potential functions designed in the relative orbital elements space
in R6. The idea is to build a point-wise global potential based on the contribution of
attractive and repulsive potential sources, namely the target relative orbits and any
other satellite located in close neighbouring areas. The attractive potential is directly
expressed in terms of relative orbital elements, those being a convenient way to ex-
press relative orbits geometry. Indeed, a set of relative orbital elements uniquely
define one particular formation configuration. On the other hand, the natural way to
express the vicinity between two satellites is using the Cartesian distance, expressed
in the LVLH reference frame in this particular application. To obtain a uniform ex-
pression of the global potential, the Jacobian of the transformation is derived, based
on the results presented in sec. 2.1. The output of the guidance, for each satellite, is
what we call guidance state and indicate as δ χg. The guidance algorithm forces the
following dynamics for each satellite i:

˙δ χg =−∇Φglb (12)
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where Φglb is the global potential:

∇Φglb = ∇Φa +∇Φr (13)

where Φa is the attractive potential, whereas Φr is the repulsive one. The recon-
figuration objective is to drive the satellites to a predefined relative configuration,
expressed in term of relative orbital elements. The set of ROE to be achieved are
called reference state and indicated as δ χr. The attractive contribution to the global
potential is determined as:

Φa(δ χ) =
1
2

ξa
∥∥δ χg−δ χr

∥∥2 (14)

The gradient in the guidance ROE space is defined as:

∇δ χg(·) =

 ∂

∂δa
,

∂

∂δλ
,

∂

∂δex
,

∂

∂δey
,

∂

∂δ ix
,

∂

∂δ iy


g

(15)

Consequently, the dynamic contribution to Eq. 13 given by the attractive potential
is:

∇δ χg = ξa(δ χg−δ χr) (16)

Active Collision Avoidance

The repulsive potential is useful to calculate the trajectory in presence of other satel-
lites, avoiding collision between agents. As previously stated, to achieve an efficient
active collision avoidance maneuver, the potential is best representative in terms of
the Cartesian state X in the Hill frame, where the metric distance is defined. Given
two satellites, i and j respectively, the repulsive potential to be computed for Eq. 13
for satellite i is defined as:

Φri j =

 1
2 ξre

−
d2
i j
η = 1

2 ξre
−‖XXXiii−XXX jjj‖2

η if di j < dlim,

0 if di j > dlim

(17)

where dlim is the threshold distance beyond which the collision maneuver is not re-
quired. In the centralized configuration, the state of the position of the spacecrafts is
known, thus it is possible to calculate the distance vector as the difference between
XXX iii−XXX jjj. The gradient of the potential is calculated using the chain-rule, which in-
volves the coordinate transformation from Cartesian state XXX to ROE δ χ:

∇δ χgΦri j = ∇X Φri j · J
X
δ χ

(18)

where JX
δ χ

is the Jacobian of the coordinate transformation, derived in section 2.1.
The gradient in the Cartesian space is defined as:
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∇X (·) =

 ∂

∂x
,

∂

∂y
,

∂

∂ z

 (19)

Hence, the gradient of the repulsive potential between agents i and j, below the
threshold, can be expressed as:

∇δ χgΦri j =−
ξr

η
e−

d2
i j
η · (XXX iii−XXX jjj) · JX

δ χ
(20)

The repulsive potential takes into account all the mutual distances between the for-
mation agents; coherently, the repulsive contribution to the global potential for satel-
lite i is the summation of the mutual repulsive potential between satellite i and all
the other satellites:

Φr =
n

∑
j 6=i

Φri j (21)

where n is the number of spacecrafts in the formation.

3.3 Distributed Control

The output of the guidance algorithm is a set of ROE, which may differ from the
target reference ones. To guarantee that the forced guidance dynamics in Eq. 12
is followed, a feedback control law is employed. The control law is derived using
the Lyapunov stability theorem. In the centralized architecture, the leader processes
the guidance loop for the entire formation as well as the calculation of the control
input for each satellite, which is then actuated by each agent. The reference signal
to track is calculated by the guidance algorithm and follows the dynamics in Eq. 12.
The current error between the desired guidance state and true state, for the entire
formation, is:

eeeδ χ = δ χg−δ χ (22)

its temporal evolution can be described as:

ėeeδ χ = ˙δ χg− ˙δ χ =−
(

∇Φa +∇Φr

)
−
(

A(ν)δ χ +Buuu
)

(23)

If we introduce the following positive semi-definite Lyapunov function:

V =
1
2

eT
δ χ

eδ χ → V̇ = eT
δ χ

ėδ χ (24)

V̇ =

(
δ χg−δ χ

)
·
[
−
(

∇Φa +∇Φr +A(ν)δ χ +Buuu
)]

(25)
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The control term can be solved to make the derivative of the Lyapunov function
negative. The aim is to drive the derivative to the term −eT

δ χ
e, which is always

negative. Hence, the following control law is derived:

uuu = B−1
[(

δ χg−δ χ

)
−
(

∇Φa +∇Φr

)
−A(ν)δ χ

]
(26)

In this way the derivative of the Lyapunov function is negative semi-definite, van-
ishing only when δ χ = δ χr, which is within the validity of the Lyapunov theorem.
This approach is similar to the one adopted by Steindorf [14], with the exception
of including the gradient of artificial potential in the control law. By including the
gradient of the potential, which forces the dynamics, the control law calculates the
action taking into account the derivative of the δ χg determined by the guidance
algorithm. The repulsive potential field incorporates the measurements of relative
distances between the agents, yielding a distributed architecture. Each spacecraft
completes the GNC loop requiring at least one relative distance measurement with
respect to another agent.

3.4 GNC algorithm overview

The full GNC loop described in section 3.1, 3.2 and 3.3. The algorithm workflow is:

1. Acquisition of states measurement by each satellite;
2. The measurements are filtered to obtain a refined state vector;
3. Determination of the relative neighbouring states ri j and vi j;
4. Calculation of the artificial potential field Φglb and the corresponding gradient

∇Φglb to establish the forced reconfiguration dynamics on-board each satellite
based on the relative measurements;

5. Calculation of the the control effort u, subject to thrust constraints, on-board each
satellite.

A schematic of the block diagram of the full GNC architecture is sketched in Fig.
1. The Kalman Filter is implemented in a decentralized architecture; the filter pro-
cesses relative state measurement with respect to the reference orbit. The relative
measurements between neighbouring satellites are directly fed to the guidance cal-
culation. The guidance block calculates the desired δ χg based on the generation of
the artificial potential field, which is comprehensive of the repulsive action of the
neighbouring satellites. The aim of the guidance forced dynamics is to drive the
spacecraft to the desired relative orbit preventing the satellites from colliding. The
dynamics imposed by the guidance is used for the control synthesis, which is based
on the Lyapunov theory on stability.
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Fig. 1 GNC algorithm architecture on-board satellite i.

4 Numerical Simulations

In order to verify the effectiveness of the proposed algorithm, two reconfiguration
scenarios are tested. Four spacecrafts flying in formation, one of which located along
the reference Earth-centered orbit, reconfigure from an initial configuration to de-
sired final one. Two different scenarios are presented, namely one reconfiguration
without a collision avoidance task execution and one involving a trajectory correc-
tion by two satellites of the formation. The GNC algorithm works with a frequency
of 1 Hz. The term time step refers to the fundamental update time of the loop: 1 s.

The final configuration is assumed to be reached with an accuracy of 1% with re-
spect to the reference value. This threshold has been set to obtain a criterion to end
the simulation. The reconfiguration algorithm is not necessarily identical to the for-
mation maintenance one, hence it can be regarded as a limit to the reconfiguration
maneuver itself. The measurements errors are assumed to be 10−1m and 10−3m/s,
in position and velocity respectively. The multiple agents are named by sequential
number, namely SC1, SC2, SC3 and SC4.

4.1 Reconfiguration without Collision Avoidance Maneuver

The initial and the desired final configuration of the formation are represented by the
relative orbital elements of each satellite with respect to the reference orbit. The ref-
erence orbital parameters and the spacecrafts δ χ for initial and final configuration
are summarized in Tab. 1 and 2. The reference orbit is a Low-Earth Orbit (LEO):
a = 6578 km, e = 10−5, i = 8o, ω = Ω = ν = 0o. The reference orbits are also
used to generate relative measurements by adding a fictitious noise, representative
of realistic sensors uncertainty. In particular, the noise level associated to relative
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position and velocity measurement respectively, is described by a Gaussian distri-
bution with standard deviation σpos = 10−1m and σvel = 10−3m/s. Spacecraft S/C 1
behaviour is not reported for analysis as it is assumed to be controlled and to follow
the reference orbit.
The reconfiguration is essentially an inversion of the relative inclination vector. The
component δ ix, see Eq. 1, is actually the algebraic difference of the spacecraft or-
bital inclination. Hence, the reconfiguration shown in this section is equivalent to an
inclination change maneuver. Such reconfiguration has been chosen because of its
complexity on control, involving along-radial-cross track control.

Table 1 Relative orbital elements of each spacecraft in the initial configuration

aδ χa[m] S/C 1 S/C 2 S/C 3 S/C 4

aδa 0 0 0 0
aδλ 0 0 0 0
aδex 0 200 400 600
aδey 0 300 600 900
aδ ix 0 500 500 500
aδ iy 0 0 0 0

a dimensional using the semimajor axis of the reference orbit

Table 2 Relative orbital elements of each spacecraft in the final configuration

aδ χa[m] S/C 1 S/C 2 S/C 3 S/C 4

aδa 0 0 0 0
aδλ 0 0 0 0
aδex 0 200 400 600
aδey 0 300 600 900
aδ ix 0 -500 -500 -500
aδ iy 0 0 0 0

a dimensional using the semimajor axis of the reference orbit

Fig. 2 shows the trajectories followed by the spacecrafts during the reconfigura-
tion, as well as the initial and final status. The duration of the simulations is 15.93
orbits, equivalent to Tsim = 84621 s. Again, the maneuver is considered fulfilled
when the accuracy threshold of 1% is achieved. The reconfiguration is not con-
strained in time, but rather in the maximum achievable thrust Fmax = (1,1,1) mN.
The latter constraint is assumed to be a realistic value for microsatellites imple-
mentation. The artificial potential is determined in the space of the relative orbital
elements: by changing the relative eccentricity and inclination vector the formation
remains bounded with respect to the natural dynamics. This, as mentioned in section
3.2, is exploited by the algorithm to construct forced trajectories that are in accor-
dance with natural stable and bounded relative orbits. As shown in Fig. 2, it is clear
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Fig. 2 Details of the spacecraft formation reconfiguration. The initial and final configuration are
shown above, while below the transition is shown.

that the satellites pass from one bounded orbit to another one pushed by the artifi-
cial potential field in the ROE space. As shown in Fig. 3, the guidance algorithm
provides the desired δ χ vector at each time step. The different parameters listed in
section 3.2 and 3.3 provides several degrees of freedom impacting the stability and
the execution time of the maneuvers. The control law developed in section 3.3 tar-
gets the stability and convergence of the system. The control action, shown in Fig.
8 exhibits non-zero values at the stable reconfiguration point due to the presence
of disturbances, which need to be counteracted for the unperturbed analytical solu-
tions found using the model in section 2. The total ∆v required by the maneuver is
reported in Tab. 5. Such values of ∆v are complaint with what can be generated by
the propulsion system for microsatellites.

Table 3 Total 3-axis ∆v required for the maneuver. Maneuver time: Tsim = 84621s.

∆vx [
m
s ] ∆vy [

m
s ] ∆vz [

m
s ]

SC2 0.09 0.03 1.51
SC3 0.24 0.07 1.51
SC4 0.38 0.10 1.51
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Fig. 3 The evolution of the relative orbital elements as the reconfiguration occurs. The dotted
lines represent the relative orbital elements of the final configuration. The spacecraft S/C 1 is not
reported because it is assumed to follow the controlled reference orbit.

4.2 Reconfiguration with Collision Avoidance Maneuver

The initial and the desired final configuration of the formation are represented by
the relative orbital elements of each satellite with respect to the reference orbit. The
reference orbital parameters and the spacecrafts δ χ for initial configuration are sum-
marized in Tab. 4. The reference orbit is a Low-Earth Orbit (LEO): a = 6578 km,
e = 10−5, i = 8o, ω = Ω = ν = 0o. The reference orbits are also used to generate
relative measurements by adding a fictitious noise, representative of realistic sensors
uncertainty. In particular, the noise level associated to relative position and veloc-
ity measurement respectively, is described by a Gaussian distribution with standard
deviation σpos = 10−1m and σvel = 10−3m/s. Spacecraft S/C 1 behaviour is not re-
ported for analysis as it is assumed to be controlled and to follow the reference orbit.
The reconfiguration is specifically designed to include a collision avoidance maneu-
vers for the sake of demonstration. Basically, the agents 2, 3, 4 are asked to swap
relative orbits with respect to spacecraft one, once again fixed along the reference
orbit. The threshold dlim in equation 17 is set to 50 m and an exit condition for the
simulation due to collisions is set to 10 m. In particular, the maneuver is:

δ χre f ,2 = δ χ0,3, δ χre f ,3 = δ χ0,4, δ χre f ,4 = δ χ0,2, (27)
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Fig. 4 The control action for the maneuvering spacecraft, namely 2,3 and 4. The cross-track com-
ponent is the most relevant, since the reconfiguration deals with changes in orbital inclination.

Table 4 Relative orbital elements of each spacecraft in the initial configuration

aδ χa[m] S/C 1 S/C 2 S/C 3 S/C 4

aδa 0 0 0 0
aδλ 0 0 0 0
aδex 0 200 400 600
aδey 0 300 600 900
aδ ix 0 0 0 0
aδ iy 0 10 10 10

a dimensional using the semimajor axis of the reference orbit

Fig. 5 shows the trajectories followed by the spacecrafts during the reconfigura-
tion, as well as the initial and final status. The duration of the simulations is 17.77
orbits, equivalent to Tsim = 94368 s. Again, the maneuver is considered fulfilled
when the accuracy threshold of 1% is achieved. The reconfiguration is not con-
strained in time, but rather in the maximum achievable thrust Fmax = (1,1,1) mN.
The latter constraint is assumed to be a realistic value for microsatellites imple-
mentation. The artificial potential is determined in the space of the relative orbital
elements: by changing the relative eccentricity and inclination vector the formation
remains bounded with respect to the natural dynamics. When the relative distance
between two agents is less than the required threshold, the active collision avoid-
ance algorithm is activated. The global potential is consequently calculated based
on the attractive and repulsive contribution, which becomes relevant only when the
satellite are drawing near. The artificial potential is expressed in the Cartesian space
and subsequently transformed to the δ χ space. As shown in Fig. 6, the guidance



16 Stefano Silvestrini, Vincenzo Pesce and Michèle Lavagna

Fig. 5 Details of the spacecraft formation reconfiguration with the collision avoidance maneuver.
The initial and final configuration are shown above, while the transition below.

algorithm provides the desired δ χ vector at each time step. The algorithm provides
a successful strategy to avoid the collision between the agents, which can be seen at
t ∼ 2 ·104 s, where the attractive potential is perturbed by the repulsive contribution.
The relative distances shown in Fig. 7 show how the collision avoidance maneu-
ver prevent the satellites from getting closer than the safety boundary of 20 m. The
control law developed in section 3.3 targets the stability and convergence of the
system. The control action, shown in Fig. 8 exhibits non-zero values at the stable
reconfiguration point due to the presence of disturbances, which need to be coun-
teracted for the unperturbed analytical solutions found using the model in section
2. The control action required to avoid the collision between two spacecrafts, in
particular SC2 and SC4, imposes a significant thrust along the radial direction. The
integral of the control profile, which is directly expressed as ∆v of the maneuver,
is significantly impacted by the CAM maneuver, meaning that the active collision
avoidance imposes a further requirement on the ∆v budget. The total ∆v required
by the maneuver is reported in Tab. 5. Such values of ∆v are complaint with what
can be generated by the propulsion system for microsatellites.
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Fig. 6 The evolution of the relative orbital elements as the reconfiguration occurs. The dotted
lines represent the relative orbital elements of the final configuration. The spacecraft S/C 1 is not
reported because it is assumed to follow the controlled reference orbit. The collision avoidance
maneuver can be clearly seen at t ∼ 2 ·104 s.

Fig. 7 Relative distance evolution between agents. The green line shows the relative distance be-
tween SC2 and SC4 that performs a collision avoidance maneuvers when approaching the mini-
mum safe separation of 20 m.

5 Conclusions

Distributed space systems are foreseen to be the new trend for space mission. Such
missions will require GNC algorithms that are more flexible and less computation-
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Fig. 8 The control action for the maneuvering spacecraft, namely 2,3 and 4. The control action
is contained in the along-track/radial plane. The avoidance maneuver imposes a sudden control
action along the radial direction.

Table 5 Total 3-axis ∆v required for the maneuver. Maneuver time: Tsim = 94368 s.

∆vx [
m
s ] ∆vy [

m
s ] ∆vz [

m
s ]

SC2 2.84 0.37 0.03
SC3 0.59 0.2780 0.03
SC4 2.08 0.51 0.03

ally demanding with respect to those available in literature. This paper addresses
the aforementioned need by proposing a full GNC algorithm architecture for forma-
tion flying spacecraft reconfiguration. The algorithm relies on a decentralized KF,
which processes relative state measurements with respect to the reference orbit. The
guidance algorithm is based on the APF approach, which implements an active col-
lision avoidance constraint based on a repulsive field expressed in the ROE space.
The linear mapping between ROE and Cartesian states is derived for eccentric or-
bits; this is necessary because the relative trajectory acquisition is usually based on
Cartesian measurements whereas the proposed algorithm relies on ROE. The main
contribution of this paper is the development of a complete GNC architecture able
to manage spacecrafts low-thrust reconfiguration in J2-perturbed orbits, respecting
the collision avoidance constraint. The guidance algorithm presented in this paper
targets flexibility and limits the computational burden for the on-board systems; on
the other hand, precision and accuracy of the final desired relative orbits are assured
by a distributed control law. The GNC loop has been validated through numerical
simulations: in particular, one is designed to demonstrate the effectiveness of the
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active collision avoidance approach. These simulations demonstrate to provide safe
reconfiguration paths to multiple spacecrafts in close proximity at minimal actu-
ation and computation cost. In particular, relative inclination reconfiguration and
position swapping can be achieved with ∆v ∼ 1 m

s within ∼ 1 day. Additionally,
autonomous collision-avoidance path planning is performed on-board, yielding a
prompt response to the hazard at a low-computational cost. The proposed algorithm
does not solve the task of relative location assignment that, in presence of a swarm
of identical satellites, may lead to more fuel-efficient trajectory planning. Future
work will also focus on refining the collision avoidance hierarchy by generating a
decision scheme in order to determine the most-performing actions between having
a single spacecraft maneuvering or both.
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