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Abstract The probability of collision between a rectangular cuboid and small debris
(that is, point-like debris) is computed, under the assumptions of the short-encounter
model. The computation is exact in the sense that it is not based on approximations
such as the enveloping sphere approximation, but on a very efficient algorithm to
compute the integral of Gaussian over the projection of a rectangular cuboid on the
collision plane.

1 Introduction

Estimating the probability of collision between orbiting objects is a fundamental
task in space security awareness. The probability of collision needs to be com-
puted whenever an active spacecraft experiences a critical conjunction in order to
determine whether or not a propulsive collision avoidance maneuver should be per-
formed. Lastly, if a maneuver is eventually required it can only be optimized with
the aid of a proper collision probability estimation method [3].

There is an abundant literature dealing with the computation of the collision prob-
ability when the two approaching bodies are spheres [8, 12, 5, 2, 14, 10]. Of these,
the methods [14, 10] are the most computationally efficient. Method [10] is the only
one that can be applied to the non-Gaussian case.

The spherical envelope of the true spacecraft geometry provides a good conser-
vative bound of the collision probability for the case of, say, two satellites. But it
may grossly overestimate the probability when at least one of the two objects is far
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from spherical. In particular when the spacecraft has the shape of a cube, the area
of its projection onto a plane is at most

√
3 = 1.732..., while the projection of its

enveloping sphere is a circle of area 3π/4 = 2.356.... Thus the spherical envelope
approximation to a rectangular cuboid overestimates the area of its projection onto
the collision plane by at least 36%. The error of the input in this field are large,
especially due to the probability density function of the relative position. However,
one should try that the methods of computation do not introduce further errors larger
than 10%.

In this paper we compute the probability of collision between a spacecraft in
the shape of a rectangular cuboid and a piece of debris of negligible size under the
assumptions of short-encounter model [8, 1, 12, 2, 5, 6, 3, 14]. These are: the projec-
tion ρ of the probability density function (henceforth, pdf) of the relative position
of the spacecraft and the debris at the moment of conjunction is known and so is
the direction of the relative velocity at that moment. ρ can be found from the pdf’s
of the positions P and Q, ρP and ρQ [9] (see Fig. 1). The direction of the relative
velocity needs to be known so that the collision plane, which is perpendicular to it,
is well defined. A typical use of this probability of collision is to decide if an evasive
maneuver will be made or not.

Fig. 1 The collision region in the encounter plane is found by sliding the projection of the debris
or the satellite (the circle S) around the projection M.

First we give an overview of how the probability of collision would be computed
if the debris were not of negligible size compared to the spacecraft, so that the
approximation done in this paper becomes clear. Suppose that M in Fig. 1 were the
projection of the spacecraft onto the collision plane. Then there would be collision
if and only if the vector PQ lies inside the shaded area. The shaded area is called the
Minkowski sum of M and the projection of the debris, which is the disk with center
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Q shown in the Figure. This is explained with greater generality in [9]. Then in the
general case the probability of collision is∫

M⊕(−S)
d2r ρ(r), (1)

where M⊕ (−S) denotes the shaded region in Fig. 1 [9] and ρ(r) is the pdf of
the relative position. When the debris is of negligible size then the rim of M in 1
disappears and we just need to compute the integral over the projection M. When the
spacecraft is a rectangular cuboid (or a parallelepiped) the projection is a hexagon
which is made up of three disjoint parallelograms. ρ(r) is almost always taken to
be a Gaussian. Recently a very efficient algorithm was implemented to compute
precisely that integral [9], which was based on a previous work of Genz. There is
web app (together with its source code) at http://sdg.aero.upm.es/index.php/online-
apps/gaussian-over-parallelogram where such integral can be computed.

2 Projection of the rectangular cuboid

Let a,b and c be the lengths of the sides of the rectangular cuboid. We choose a
Cartesian coordinate frame in which the z axis is parallel to the relative velocity
between the cuboid and the debris and points towards the cuboid. The x axis has
the direction of projection of the side of length a and the y axis completes a right-
handed frame. Let P denote the vertex which is expected to cross the collision plane
first. Then the angles θa,θb and θc made by the three sides which meet at P and
the z axis satisfy 0 ≤ θa,θb,θc ≤ π/2. θc is determined by the other three angles,
therefore we shall give the formulae in terms of θa and θb only. In a generic position
of the cuboid the three faces meeting at vertex P yield a projection on the collision
plane, and this is the case that we shall consider here. In non generic cases only two
or one faces project onto the collision plane.

Fig. 2 Flat projection of a cube in a generic position.

Each of the three faces of the cuboid is a rectangle and the projection of a rect-
angle onto a plane is a parallelogram. Indeed, a projection is a linear transformation
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(see, e. g., [4], p. 113) and thus it transforms parallel lines into parallel lines. As an
example, the projection of a cube is shown in Fig. 2

a

b

b

a

v
relative

Fig. 3 Angles θa and θb are shown.

We define spherical coordinates where θ is the colatitude (angle made with the
positive direction of the z-axis) and ϕ is the longitude. The coordinates of the
unit vectors associated with the sides of lengths a and b are ua = (sinθa cosϕa,
sinθa sinϕa,cosθa) and ub = (sinθb cosϕb,sinθb sinϕb,cosθb) (see Fig. 3). The co-
sine of the angle θc is the third component of ua×ub, which is

cosθc = sin(ϕb−ϕa)sinθa sinθb. (2)

Since ua and ub are perpendicular, ua · ub = cosθa cosθb + sinθa sinθb cos(ϕb −
ϕa) = 0⇒

cos(ϕb−ϕa) =−
cosθa cosθb

sinθa sinθb
. (3)

Since 0 ≤ θa,θb ≤ π/2, the four trigonometrical functions that appear in the
rhs of eq. (3) are positive and π/2 ≤ |ϕb−ϕa| ≤ π . Furthermore, cos(θa + θb) =
−(sinθa sinθb−cosθa cosθb)≤ 0⇒ π/2≤ θa +θb ≤ π . Thus, when θa and θb are
both between 0 and π/2 and θa is given, (π/2)−θ ≤ θb ≤ π−θ . This can be used
as a test to reject invalid input data when writing a program.

Equation (3) allows us to write ua,ub and uc in terms of θa,θb and ϕa only:

ub = (sinθb cos(ϕa +(ϕb−ϕa)),sinθb sin(ϕa +(ϕb−ϕa),cosθb) =

(
−sinθb

(
cosϕa

cosθa cosθb

sinθa sinθb
+ sinϕa

√
−cos(θa +θb)cos(θa−θb)

sinθa sinθb

)
,
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sinθb

(
−sinϕa

cosθa cosθb

sinθa sinθb
+ cosϕa

√
−cos(θa +θb)cos(θa−θb)

sinθa sinθb

)
,cosθb

)
=

1
sinθa

(
−cosϕa cosθa cosθb− sinϕa

√
−cos(θa +θb)cos(θa−θb),

−sinϕa cosθa cosθb + cosϕa
√
−cos(θa +θb)cos(θa−θb),sinθa cosθb

)
. (4)

uc = ua∧ub =

(
−cosϕa

√
−cos(θa−θb)cos(θa +θb)cosθa + cosθb sinϕa

sinθa
,

−cosϕa cosθb−
√
−cos(θa−θb)cos(θa +θb)cosθa sinϕa

sinθa
,

√
−cos2θa + cos2θb

2

)
. (5)

The choice ϕ = 0 simplifies the preceding expressions to:

ua = (sinθa,0,cosθa) (6)

ub =
1

sinθa

(
−cosθa cosθb,

√
−cos(θa +θb)cos(θa−θb),sinθa cosθb

)
. (7)

uc =(
−
√
−cos(θa−θb)cos(θa +θb)cosθa

sinθa
,
−cosϕa cosθb

sinθa
,

√
−cos2θa + cos2θb

2

)
.

(8)

We define the vectors
a = a ua
b = b ub
c = c uc

 (9)

and their projections a′,b′,c′ on the xy plane (see Fig. 4), which are
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a′ = a(sinθa,0,0), (10)

b′ =
b

sinθa

(
−cosθa cosθb,

√
−cos(θa +θb)cos(θa−θb),0

)
, (11)

c′ = c
(
−
√
−cos(θa−θb)cos(θa +θb)cosθa

sinθa
,
−cosϕa cosθb

sinθa
,0
)
. (12)

b sin b

a sin a

ab−

P

Fig. 4 Projection of the face of sides a and b onto the collision plane.

The area of the projected hexagon is

|a′∧b′+ |b′∧ c′|+ |c∧a′|=

ab

√
cos2θa + cos2θb

2
+bc|cosθa|+ ca|cosθb|. (13)

The four corners of each of the parallelograms are

OP+ ±a′±b′
2

OP+ ±b′±c′
2

OP+ ±c′±a′
2

 . (14)

3 Computation of the probability of collision

We are going to suppose that ρrel is a Gaussian, because the pdf’s of the position, in
terms of which ρrel is defined, are almost always given as Gaussians. The enclosing
parallelogram are now completely determined. The problem at hand is to evaluate
the integral

1
2π detΣ

∫
Par

dx dy exp−1
2
(x,y) ·Σ−1 ·

(
x
y

)
, (15)
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over each of the parallelograms, where Σ is the covariance matrix,

Σ =

(
σ2

x σxy
σxy σ2

y

)
. (16)

In order to do this integral we shall develop a method for the computation of bi-
variate normal probabilities in rectangular domains based on the work of Genz [11].

In [11] Genz proposed and compared several algorithms for the numerical com-
putation of bivariate, trivariate normal distribution and Student t probability distri-
butions. In particular, a very fast algorithm was presented to compute the bivariate
normal probability L(h,k,ρ) for a domain of the form [h,∞)× [k,∞) (h,k ∈ ℜ)
and a Gaussian of correlation ρ ∈ [0,1] and σx = σy = 1. Note that L is re-
lated to the standard bivariate normal cumulative distribution Φ by the expression
Φ((x,y),ρ) = L(−x,−y,ρ). A more detailed description of the algorithm can be
found in the Appendix.

We are going to explain the procedure for the parallelogram whose sides are
the vectors a′ = (a′x,a

′
y,0) and b′ = (b′x,b

′
y,0). It is always possible to find a linear

transformation M that transforms the parallelogram into a square of unit side by
imposing:

Ma′ =
(

1
0

)
, M′ =

(
0
1

)
. (17)

Combining these two equations and solving for M yields:

M ≡
(

a′x b′x
a′y b′y

)−1

. (18)

Note that the resulting linear transformation will exist as long the matrix formed by
a′ and b′ is invertible, that is, if both vectors are linearly independent. This condition
is met by any non-degenerate parallelogram.

The new domain is a square of unit side, defined by the vertex

OP∗ =
(

x∗P
y∗P

)
≡M OP , (19)

and side vectors a′∗ = (a′x
∗,a′y

∗) ≡ (1,0) and b′∗ = (b′x
∗,b′y

∗) ≡ (0,1). The covari-
ance matrix will transform to:(

σ∗2x σ∗xy
σ∗xy σ∗2y

)
≡M

(
σ2

x σxy
σxy σ2

y

)
MT , (20)

which is in general not diagonal.
In the algorithm by Genz a correlation matrix instead of a covariance matrix

is used, so one final transformation is needed. By applying two dilations (or con-
tractions) of magnitudes 1/σ∗x and 1/σ∗y along the x and y axes, respectively, the
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covariance matrix becomes a correlation matrix:(
1 ρ ′

ρ ′ 1

)
≡
(

1 σ∗xy/σ∗x σ∗y
σ∗xy/σ∗x σ∗y 1

)
, (21)

and the domain becomes a rectangle of vertex

OP∗∗ =
(

x∗0/σ∗x
y∗0/σ∗y

)
, (22)

and side vectors a′∗∗ = (a′x
∗∗,a′y

∗∗) = (1/σ∗x ,0) and b′∗∗ = (b′x
∗∗,b′y

∗∗) = (0,1/σ∗y ).
Calling Rect the new domain, it is possible to write

1
2πσxσy

∫
Par

dx dy exp−1
2

(
x2

σ2
x
+

y2

σ2
y

)
=

1

2π
√

1−ρ ′2

∫
Rect

dx dy exp
−(x2−2ρ ′xy− y2)

2(1−ρ ′2)
=

Φ(Rect,ρ ′),

(23)

where the latter can be computed numerically by combining four calls to the bivari-
ate normal probability function considered by Genz:

Φ(Rect,ρ ′) =

L(x′0,y
′
0,ρ
′)−L(x′0 +a′x,y

′
0,ρ
′)−

L(x′0,y
′
0 +b′y,ρ

′)+L(x′0 +a′x,y
′
0 +b′y,ρ

′).
(24)

We have programmed a web app implementing Φ(Rect,ρ ′) in JavaScript, which can
be found (together with its source code) at http://sdg.aero.upm.es/index.php/online-
apps/gaussian-over-parallelogram.

4 Example

Let OP = (0,0,0), a = 2, b = 1, c = 3, θa = π/4, θb = π/3, ϕa = 0 and Σ =(
σ2

x σxy
σxy σ2

y

)
=

(
100 0

0 100

)
. Then the corners of the parallelograms are found using

formula 14. The parallelograms are depicted in the figure. For the parallelograms
(a,b), (b,c) and (c,a) their coordinates are, respectively:

{(0.,0.),(1.41421,0.),(0.914214,0.707107),(−0.5,0.707107)},

{(0.,0.),(−1.5,−2.12132),(−2.,−1.41421),(−0.5,0.707107)}
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and

{(0.,0.),(1.41421,0.),(−0.0857864,−2.12132),(−1.5,−2.121329)}.

-2 -1 1 2

-3

-2

-1

1

Fig. 5 The parallelograms are the projections of the faces of the rectangular cuboid onto the
collision plane.

The coordinates of the corners of each parallelogram can be introduced in the
app to yield the following result for the parallelograms (a,b), (b,c) and (c,a), re-
spectively: 0.000015... + 0.000033... + 0.000047... ≈ 0.000097.

5 Future developments

We have assumed here that the attitude of the rectangular cuboid is known and
fixed. However, its attitude could be changed without changing the projection of its
center of mass. This does not have in general a dramatic effect on the probability of
collision, but when the probability of collision is a little above the allowed threshold
a change of attitude could bring it below the threshold, especially when the cuboid
departs significantly from a cube. When the rectangular cuboid is a cube the ratio of
the largest projected area to the smallest projected area is already

√
3≈ 1.73 and it is

larger for any other rectangular cuboid. In the case of a cube the smallest projected
area happens when the collision plane is parallel to some face of the cube; the largest
projected area happens when the collision plane is perpendicular to a straight line
joining opposite vertices of the cube. In the latter case the projection of the cube is a
regular hexagon. We believe that the most advantageous attitude to avoid a collision
is when the projection of the rectangular cuboid is the smallest face with its longest
side tangent to some line of equal probability.
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The most important generalization of this work is to extend it to the case of debris
whose size is not negligible compared to the spacecraft. We plan to do this along the
lines suggested by reference [9].

Last, a similar study could be carried out for spacecraft of shape a general cuboid,
that is, a parallelepiped. But this case is rare.

6 Conclusions

An efficient and straightforward method for the evaluation of the collision probabil-
ity between a rectangular cuboid and a small debris has been presented, leveraging
the fact that the planar projection of the cuboid on the collision plane can be decom-
posed as three parallelograms. The collision probability for each parallelogram has
been computed following the approach proposed by the authors in a recent work,
by applying a linear transformation to change the domain into a rectangular one
and using a numerical algorithm for the evaluation of bivariate normal probabil-
ity distributions. This solution improves on the enveloping sphere approximation
by retaining the parallelepiped shape of the first object, which better approximate
common satellite geometries and other elements such as solar arrays. The high com-
putational efficiency of the method is highlighted by the availability of a web-based
sample implementation. Finally, a representative numerical example has been pro-
vided.
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Appendix

Let us consider the following bivariate normal (BVN) probability:

L(h,b,ρ) =
1

2π
√

1−ρ2

∫
∞

h

∫
∞

k
exp
−(x2−2ρxy+ y2)

2(1−ρ2)
dxdy (25)

related to the standard BVN distribution as Φ((x0,y0),ρ) = L(−x0,−y0,ρ). Al-
though it would be possible to evaluate Eq. 25 directly using a 2D numerical in-
tegration method, a faster algorithm can be achieved by reducing the problem to a
single integral. Following previous work by Drezner and Wesolowski [7], Genz pro-
posed in [11] to apply the formula for the partial derivative of the BVN distribution
with respect to the correlation derived by Plackett [13]:
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∂L(h,k,r)
∂ r

=
1

2π
√

1− r2
exp
−(h2−2rhk+ k2)

2(1− r2)
, (26)

and integrate it over r to obtain an expression for L in terms of a single integral in
the correlation.

The most straightforward choice would be to integrate between 0 and ρ , since
the initial value for L at r = 0 is easily computed as the product of two univariate
normal distributions. However, the singularity at |r| = 1 harms the accuracy of the
numerical integration for cases with |ρ| ∼ 1. To alleviate this issue Drezner and
Wesolowsky [7] proposed to integrate instead between ρ and sign(ρ): integrating
only over the small region close to the singularity improves the numerical behavior,
and the value of L at r =±1 can also be expressed in terms of univariate normal dis-
tributions. Unfortunately, this new integral can still present numerical problems for
h close but not equal to sign(ρ)k. Drezner and Wesolowsky circumvented this by ap-
plying a clever trick: they expanded part of the integrand in Taylor series of

√
1− r2,

providing the analytic integral of the polynomial part and performing the numerical
integral of the remainder. The original work by Drezner and Wesolowsky [7] uses
the Taylor expansion up to order 3, and Genz [11] later extended the result to order
5.

Building upon all these developments, Genz [11] defined an efficient algorithm
for the numerical evaluation of L in double precision. On the one hand, he used the
integral between 0 and ρ for |ρ| ≤ 0.925, and the modified integral between ρ and
sign(ρ) for |ρ| > 0.925. To improve the numerical treatment of the integrands, he
did the changes of variable r = sin(θ) and x =

√
1− r2, respectively. On the other

hand, he applied Gauss-Legendre integration rules with enough points to maintain
an absolute error less than 5 · 10−16 (following extensive numerical tests, he pro-
posed the 6 points rule for |ρ| < 0.3, the 12 points rule for 0.3 ≤ |ρ| < 0.75, and
the 20 points rule for |ρ|> 0.75). We have used an in-house implementation of the
original Genz algorithm, modified in order to deal with the more general problem
of integrating the Gaussian over a parallelogram.
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