
Generating Aircraft Trajectories encoded with
the Aircraft Intent Description Language using
the Modeling Language Modelica

Michael Hardt and Robert Höpler

Abstract The integration of Unmanned Aircraft Systems (UAS) into civil, non-
segregated airspace remains an open problem for which many distinct proposals
have been made. One of the fundamental ingredients for a viable system is the fa-
cilitation of the communication of an aircraft’s trajectory among the airspace stake-
holders so as to introduce a necessary degree of predictability into the system. This is
essential for the coordination of aircraft in a densely populated airspace and, in par-
ticular, to be prepared for potential time-critical contingencies. The Aircraft Intent
Description Language (AIDL) has been proposed in the past to efficiently represent
an aircraft’s trajectory. It consists of describing the aircraft’s flight intent into several
parallel sequences of instructions, which are intuitive and easily interpretable, and
can be translated into a high resolution flight trajectory which takes into account the
aircraft performance model and environmental conditions. The benefits of this rep-
resentation is that its information content is minimal suitable for reduced bandwidth
communications, and it is independent of the aircraft’s performance model and en-
vironmental conditions, both of which may vary over time, or for which certain
stakeholders may later dispose of improved information. Nevertheless, a potential
hindrance in the implementation of this trajectory representation consists in the tra-
jectory reconstruction process. A system of differential-algebraic equations (DAE)
of possibly high index must be solved. Numerical tools to date have required the
consideration of numerous special use cases such as to condition the numerical so-
lution problem accordingly. This paper presents a generic approach by which this
trajectory reconstruction process is performed making use of the object-oriented
modeling language Modelica and associated tools. Efficient embeddable code can

Michael Hardt
Boeing Research & Technology - Europe, Avenida Sur del Aeropuerto de Barajas 38, Floor 4,
Madrid, Spain, e-mail: michael.w.hardt@boeing.com

Robert Höpler
Campus Burghausen, Technische Hochschule Rosenheim, Marktler Strasse 50, 84489 Burghausen,
Germany
e-mail: robert.hoepler@th-rosenheim.de

1

2 Michael Hardt and Robert Höpler

then be generated from this environment for UAS. It is considered that these tech-
niques can be an important enabler to permit a wide sector to fully take advantage
of the numerous advantages that this description language offers.

1 UAS Prediction with Trajectory Management

The integration of low altitude UAS operations into civil and military airspace
presents a variety of issues and challenges that remain unresolved [3]. The sUAS
(small UAS less than 20 kg) fleet alone between hobbyists and commercial enter-
prises is projected to number as much as 6 million in the U.S. by 2021. The airspace
occupied by these aircraft is generally considered to be below 400 feet above ground
level. This same airspace is expected to be the emerging sector of flying air taxis,
which lie outside the sUAS category. To deal with the inevitable congestion within
this airspace, new, advanced techniques of UAS Traffic Management (UTM) are be-
ing investigated and tested. The concept of UTM is based upon information sharing
and exchange between the relevant stakeholders: aircrafts, operators, and air traf-
fic authority. Future UTM operations shall require all operators to coordinate and
share their flight intent with each other to achieve safe operations. Though there are
still no existing standards regarding the format of the flight intent content, it is cer-
tain that the transmitted information must facilitate full trajectory computation thus
permitting flight coordination and safety.

Future UTM concepts shall rely extensively upon automation [3]. A mature op-
erational capability necessary to support a high-density airspace shall require fully
autonomous planning, scheduling, separations, entry/exit airspace, interoperability,
and contingency management. In particular, trajectory management is vital for the
resolution of contingency management scenarios [2]. As is recognized in the latter
work, the challenging issue of handling trajectories lies in the diversity of aircraft
types, the innumerable system failure sources, and failure modes. Predictability is
what is expected from trajectory management techniques which is essential for pro-
viding guarantees in terms of airspace restrictions, separation awareness, and espe-
cially in handling contingencies.

Some of the desired qualities in a trajectory computational framework are [2, 3]:

(A) No burden on current system: weak requirements on communication band-
width and computational power

(B) Cooperative and interoperable: facilitate trajectory reconstruction and in-
terpretation for all stakeholders

(C) Performance and risk-based: trajectory parameterization to satisfy perfor-
mance and/or risk-based criteria

(D) Efficient: real-time capable on standard hardware

(E) Scalability and sustainability: easily expandable for new vehicle configura-
tions, adaptation for use with other tools, varying degrees of model fidelity

Generating Trajectories described by AIDL using Modelica 3

(F) Constraint information: no-fly zones, weather, non-conforming flight, other
restrictions

2 Aircraft Intent Description Language

The formal language known as Aircraft Intent Description Language (AIDL) [11, 6]
was developed for serving as a standard, interoperable means of describing and ex-
changing predicted aircraft trajectories in Trajectory-Based Operations (TBO) for
Air Traffic Management (ATM). The underlying framework satisfies the above de-
sired attributes for a UTM system.

Fig. 1 Models forming the basis for a AIDL Trajectory Computation Framework

The formal language constructs representing aircraft intent imply constraints im-
posed upon the aircraft motion and configuration degrees of freedom (dof). A three-
dimensional motion model is typically used for fixed-wing aircraft as shown in Fig-
ure 1, though the framework can be readily adapted for other systems.

Trajectory prediction is achieved by combining the AIDL instructions or aircraft
intent rules with the flight dynamic model, which may vary slightly according to
the aircraft class (fixed-wing, quadrotor, etc), the specific dynamic parameters of
the dynamic model for the aircraft of interest, i.e. aircraft performance model, and
a meteorological model describing the wind field and potentially other atmospheric
characteristics. Once these elements are in place, by expressing aircraft intent ac-
cording to the AIDL, it is ensured that each instance of aircraft intent defines a

4 Michael Hardt and Robert Höpler

unique trajectory. The advantage of this approach is that any stakeholder with inter-
est in the aircraft’s motion may reconstruct an aircraft’s future flight trajectory with
the minimal, compact information composing the AIDL instructions whereby the
other elements consisting of the aircraft performance model and atmospheric model
may be obtained by other means or even updated from independent estimation pro-
cedures.

Addressing the desired UTM framework attributes listed in Section 1, Table 1
summarized the benefits of employing AIDL for trajectory representation.

Table 1 AIDL UTM Attributes

(A) No Burden on System: only flight intent rules need to be transmitted, the entire right
side of Figure 1 can be preloaded for all available standard aircraft configurations

(B) Cooperative, interoperable: intuitive language constructs that are human-readable

(C) Performance and risk-based: motion dof constraints can be parameterized according
to performance and/or risk-based criteria

(D) Efficient: real-time trajectory generation tools exist for solving the differential-
algebraic equation resulting from the AIDL Trajectory Computation Framework

(E) Scalable, sustainable: the trajectory computational is modular; hence, vehicle con-
figurations are easily substituted with others, also varying degrees of model fidelity
can be adapted

(F) Constraint amenable: no-fly zones are typically incorporated directly into the flight
intent, weather inputs into the dynamic guidance model are independent and modular
with the advantage that they may be easily updated as better information becomes
available

The subject of this paper lies principally in the efficiency aspect (D) of the com-
putational framework. A generic methodology is presented (a) for symbolically ex-
pressing the equations of the multiple-phase differential-algebraic equation system
including the hybrid (switching) behavior between the AIDL phases using the lan-
guage Modelica, and (b) creating efficient code, and (c) solving the DAE efficiently
and numerically by means of an associated Modelica tool.

AIDL is a domain-specific formal language (DSL) composed of an alphabet (set
of “instructions” or atomic ways of describing aircraft behavior), a lexicon (set of
rules that govern the legal/meaningful combination of elements from the alphabet)
and a sequence control mechanism (set of “triggers” that switch behavioral changes
upon reaching conditions). Table 3 lists the recognized AIDL groups, each of which
contains a set of different instructions.

The AIDL alphabet contains the language instructions and their properties. AIDL
instructions are composed of three members: the effect, which describes the use of
a specific degree of freedom, the execution interval, which determines the length of
time for which the instruction is active, and the conditions, which impose additional
constraints on the resulting aircraft trajectory. Most intent instructions do not contain

Generating Trajectories described by AIDL using Modelica 5

any conditions, but they do always have associated an effect and trigger (which
defines the execution interval).

The AIDL instruction effects capture the basic commands and guidance modes at
the disposal of the Flight Management System (FMS) to direct the operation of the
aircraft. They can be seen as the minimal indivisible pieces of information regarding
the operation of the aircraft and represent the language symbols [5]. Table 2 lists 27
representative (non-configuration) instruction effects present in the AIDL alphabet,
known as ΣAIDL.

Table 2 AIDL alphabet ΣAIDL

AIDL Alphabet - ΣAIDL
Effects

Keyword Effect # Keyword Effect Name
1 SBA Set Bank Angle 15 VSL Vertical Speed Law
2 BAL Bank Angle Law 16 HVS Hold Vertical Speed
3 HBA Hold Bank Angle 17 EL Energy Law
4 OLBA Open Loop Bank Angle 18 HE Hold Energy
5 CL Course Law 19 HSL Horizontal Speed Law
6 HC Hold Course 20 HHS Hold Horizontal Speed
7 LPL Lateral Path Law 21 SL Speed Law
8 VPL Vertical Path Law 22 HS Hold Speed
9 AL Altitude Law 23 TL Time Law
10 HA Hold Altitude 24 ST Set Throttle Control
11 SPA Set Path Angle 25 TCL Throttle Control Law
12 PAL Path Angle Law 26 HTC Hold Throttle Control
13 HPA Hold Path Angle 27 OLTC Open Loop Throttle Control
14 OLPA Open Loop Path Angle

The ΣAIDL instruction effects can be categorized into four groups according to
the mode in which they influence the aircraft behavior.

1. Set instruction effects model target modes that represent the change of a given
aspect of the aircraft motion or configuration from its initial value towards a
target value

2. Law instruction effects model advanced modes of guiding and controlling an
aircraft. They generally involve tracking a predefined path in one or more of the
state variables.

3. Hold instruction effects model the basic modes of guiding or controlling an air-
craft or setting its configuration. These basic modes act as simplified Law modes,
in which once captured, the desired motion or configuration aspect is maintained
constant by the coordinated action of the aircraft control and configuration set-
tings.

6 Michael Hardt and Robert Höpler

4. Open Loop instruction effects model a flight command issued by the FMS that
acts directly over the controls. Hence, they do not depend on the state variables,
just the time.

The ΣAIDL instruction effects can be classified into 12 different groups (not con-
sidering those which affect aircraft configuration) based on the target variable af-
fected by the effect (refer to table 3 in which the color code used for each group
coincides with the color code of its representative instructions). All effects with the
same target variable belong to the same group. The target variable is the specific
state or control (or combination of them) at which the instruction guidance or con-
trol mode is directed. Effects from the same group cannot be active at the same time
(concurrent execution intervals) as they are incompatible in terms of solvability ac-
cording to the analysis performed in [5].

Table 3 AIDL effect groups

Groups
Code

Keyword Group Name
1 LDC Lateral Directional Control
2 LDG Lateral Directional Guidance
3 LPG Lateral Positional Guidance
4 VPG Vertical Positional Guidance
5 AG Altitude Guidance
6 PAC Path Angle Control
7 VSG Vertical Speed Guidance
8 EG Energy Guidance
9 HSG Horizontal Speed Guidance
10 SG Speed Guidance
11 TG Time Guidance
12 TC Throttle Control

The specifiers of target variables indicate concretely which state variable is be-
ing constrained. As previously mentioned, the instruction groups are defined by the
collection of instructions / effects which share the same set of specifiers. For an in-
struction to be implemented, its corresponding specifier must also be indicated. The
variable definitions as shown in the specifier list in Table 3 are listed in the following
table:

Associated with each instruction is a trigger. Triggers are denoted as the condi-
tions which indicate the end of an instruction. Once that condition is fulfilled, the
instruction ends, and the next instruction in the given thread is executed. The trig-
ger condition consists of an algebraic relation of a function of the aircraft state or
time variable. Each trigger is also associated with a unique ID. Table 5 lists typical
trigger dependencies which are compared with a polynomial function of time for a
zero-crossing event.

Generating Trajectories described by AIDL using Modelica 7

Table 4 Specifier Flight Variables

Specifier Flight Variables
Symbol Units Variable Name

χTAS [rad] aerodynamic heading angle
γTAS [rad] aerodynamic path angle
µTAS [rad] aerodynamic bank angle

χ [rad] bearing angle
γ [rad] path angle
µ [rad] bank angle
ϕ [rad] geodetic latitude angle
λ [rad] geodetic longitude angle
h [m] altitude above mean sea level

HP [m] barometric altitude
ḣ [m/s] altitude rate

ḢP [m/s] barometric altitude rate
vTAS cos(γTAS) [m/s] magnitude of true airspeed when projected onto horizontal plane in ned co-

ordinates
vGRD cos(γ) [m/s] magnitude of ground speed when projected onto horizontal plane in ned

coordinates
vTAS [m/s] true airspeed magnitude
vCAS [m/s] calibrated airspeed
vGRD [m/s] ground speed magnitude

t [sec] elapsed time in current instruction
δT [-] throttle value [0–1]

Typically with fixed-wing aircraft, a 3-dof aircraft dynamic guidance model is
sufficient for trajectory specification. It’s expression in wind relative coordinates
permit a convenient decoupling between the experienced longitudinal forces, and
the lateral and vertical motion degrees of motion described by coordinated turns.

The fundamental interpretation of an AIDL instruction is the imposition of a
mathematical constraint upon the equations of aircraft motion. Thus, in the case of
fixed-wing aircraft, these three flight dof can then be constrained via the implemen-
tation of three parallel AIDL threads. Table 6 shows a further categorization of the
ΣAIDL groups into profiles. The allowed combinations of simultaneous AIDL pro-
files is illustrated in Table 7 when assigned to the Lateral, Longitudinal, and Propul-
sive dof / threads. As all three dof have been constrained, the calculated trajectory is
unique. This is important in maximizing the predictability of an aircraft’s trajectory
simply by communicating its flight intent via its intended AIDL instructions.

The calculation of a trajectory given by a succession of AIDL instructions and
triggers in the three parallel threads, as given in Table 7, implies the solvability
for the numerical solution of a differential-algebraic equation (DAE), i.e. the 3-dof
flight dynamic model coupled with the three AIDL constraints, whose index de-
pends upon the nature of the currently active AIDL instructions. The AIDL formal
language constructs are designed such that the accepted combinations of AIDL in-
structions permit the solvability of the DAE as described in detail in [5].

8 Michael Hardt and Robert Höpler

Table 5 Trigger Codes

Trigger Codes
Code# Variable z Units Description

0 ID - unique trigger identification
1 d [m] distance traveled since instruction begin
2 t [s] elapsed time since instruction begin
3 T [s] elapsed time since AIDL guidance begin
4 dLPL [m] projected distance traveled along LPL since instruction begin
5 y - unknown trigger
10 vGRD [m/s] ground speed magnitude
11 M - Mach number
12 vTAS [m/s] true airspeed magnitude
13 vIAS [m/s] indicated airspeed
14 vCAS [m/s] calibrated airspeed
15 vEAS [m/s] equivalent airspeed
20 h [m] geometric altitude
21 Hp [m] geopotential pressure altitude
22 Hi [m] geopotential indicated altitude
23 H [m] geopotential altitude
30 µTAS [rad] aerodynamic bank angle
40 δT − throttle
50 χTAS [rad] aerodynamic heading angle
51 χ [rad] true bearing angle
52 χTAS,MAG [rad] magnetic heading angle
53 χMAG [rad] magnetic bearing angle
60 γTAS [rad] aerodynamic path angle
61 γ [rad] path angle
70 ḣ [m/s] geometric rate of climb
71 Ḣp [m/s] rate of climb
80 m [kg] mass

Table 6 AIDL Profiles

Profiles
Keyword Profile Name Groups
1 L Lateral LDC , LDG , LPG
2 V Vertical VPG , AG , PAC , VSG
3 E Energy EG
4 S Speed HSG , SG , TG
5 T Thrust TC

3 AIDL Differential Algebraic Equation Formulations

Despite its many favorable attributes listed in Table 1, AIDL has had only limited
acceptance. This may partly be due to the numerical complexity of resolving the
DAEs in order to compute the aircraft trajectory. The primary objective of this paper
is to provide a generic manner by which standard tools can be used to circumvent

Generating Trajectories described by AIDL using Modelica 9

Table 7 AIDL Threads & Motion Profile Allowed Combinations

Threads
Keyword DOF Profiles
1 LAT Lateral L L L L
2 LON Longitudinal V V E S
3 PROP Propulsive S T T T

the need for specially designed software to formulate the DAE according to each
possible combination of AIDL instructions.

In this section the DAE formulation and its implications shall be presented. Be-
low, equations 1-3 represent the force equations of the three-dof fixed-wing model,
4 is a mass variation equation, and equations 5-7 are the navigation equations de-
scribing the aircraft position.

v̇TAS−
T −D−W sin(γTAS)

m
+ ẇ

WFS

1 = 0 (1)

γ̇TAS−
1

vTAS

[
Lcos(µTAS)−W cos(γTAS)

m
+(

ẇ
WFS

3 cos(µTAS)+ ẇ
WFS

2 sin(µTAS)
)]

= 0 (2)

χ̇TAS−
1

vTAS cos(γTAS)

[
Lsin(µTAS)

m
+
(

ẇ
WFS

3 sin(µTAS)− ẇ
WFS

2 cos(µTAS)
)]

= 0

(3)

ṁ+F = 0 (4)

λ̇ − vTAS cos(γTAS)sin(χTAS)+ w
WFS
2

(N +h)cos(ϕ)
= 0 (5)

ϕ̇− vTAS cos(γTAS)cos(χTAS)+ w
WFS
1

(M+h)
= 0 (6)

ḣ−vTAS sinγTAS− ẇ
WFS

3 = 0 (7)

In addition to the specifier flight variables presented in Table 4, Table 8 describes
the remaining variables found in Equations 1-7.

As highlighted in [5, 11], the variables may be grouped into state X and control
u vectors, i.e.

X = {vTAS,γTAS,χTAS,λ ,ϕ,h,m} (8)
u = {µTAS,L,δT} (9)

while the remaining variables are determined as a function of these within the Air-
craft Performance Model (APM) and the Earth Model (E). The AIDL instructions
are equivalent to constraints acting upon the state and control vectors. In the case

10 Michael Hardt and Robert Höpler

Table 8 Dynamic Equation Variables

Dynamic Equation Variables
Symbol Units Variable Name

vTAS [mps] true airspeed
T [N] aircraft thrust force magnitude
L [N] aircraft aerodynamic lift force magnitude
D [N] aircraft aerodynamic drag force magnitude
W [N] aircraft weight magnitude
F [massps] fuel consumption rate

ẇ
WFS
j [mps2] wind acceleration, jth component, in wind relative coordinate system

w
WFS
j [mps] wind velocity, jth component, in wind relative coordinate system

of a 3-dof fixed wing model, three such constraints selected according to compat-
ible categories as given in Table 7 then uniquely define the trajectory. The model
equations may then be represented as

f (X ,u,E(X ,u), t) = Ẋ

g1(X ,u,E(X ,u), t) = 0
g2(X ,u,E(X ,u), t) = 0
g3(X ,u,E(X ,u), t) = 0

(10)

The differential index of a the DAE system in Eq. (10) is defined to be the maxi-
mum number of differentiations of each of the algebraic constraints gi(X ,u,E(X ,u), t)
necessary such that the system may be represented as an ODE system. It is a com-
mon indicator of the difficulty for solving such a system. Many numerical inte-
gration tools can solve systems of differential index 1, but not of a higher index.
Mechanical systems generally do not present an index higher than 3, but even these
are challenging to solve.

Table 9 Minimum DAE Differential Index

Minimum DAE Index Sample AIDL Instructions
1 TL , HBA
2 HS , HPA , HC
3 LPL , VPL , HA

As described in [5], the implications of applying AIDL instructions (constraints)
to the flight equation of motion upon the DAE index are listed in Table 9. The max-
imum DAE index resulting from each of the three instructions implies the overall
DAE index for the equation system (10). Note that only a set of example instructions
are given. In general, constraints acting directly upon the control variables imply a
minimum index of 1, constraints upon velocity variables a minimum index of 2, and
constraints upon position variables an index of 3.

Generating Trajectories described by AIDL using Modelica 11

The system diagram representing the combination of the Trajectory Computation
Model (TCM) with the Aircraft Performance Model (APM), the Earth Model (E),
and the motion constraints resulting from the AIDL instructions is illustrated in
Figure 2 [5].

Fig. 2 AIDL Trajectory Computation Framework System Diagram

4 Modelica Formulation of AIDL Trajectory Generation

Modelica is an object-oriented and declarative language for modeling large, com-
plex, and heterogeneous physical systems. Modelica provides language elements
which allow to concisely describe system models using differential, algebraic, and
discrete equations. A Modelica compiler will automatically transform these equa-
tions into a unified mathematical description form called Hybrid DAE [8]. This hy-
brid DAE forms the basis for many potential realizations of the model equations,
such as simulator code for numerical integration of the equations of motion, plant
models to do mathematical optimizations or control design, or simply executable
code of the model equations.

The solution of the AIDL trajectory generation problem sketched in Section 3
can benefit from several key features of the Modelica language and its transforma-
tion into a hybrid DAE. The declarative nature of Modelica strongly facilitates the
implementation of differential equations. First, the differential and algebraic equa-
tions do not have to be manipulated symbolically to obtain a causal model; this
is done automatically during translation by the Modelica tool. Second, and more
essential in our case, AIDL introduces constraint equations to the flight dynamic

12 Michael Hardt and Robert Höpler

model. Since Modelica facilitates the switching of any state-dependent symbolic
(constraint) equation, there is no need to provide a distinct DAE system for each
AIDL constraint pattern. This leads to a minimum implementation effort and con-
cise and maintainable models.

Controlled technical system models are often characterized by continuous, piece-
wise continuous, and discrete behavior, all at the same time. This is also termed
hybrid behavior. Prominent examples are digitally controlled plants, the modeling
of friction and hard stops, or analog-digital converters. In AIDL trajectory genera-
tion, the discontinuous component is introduced by the timely piecewise structure
of AIDL threads, which is not part of the intrinsically continuous aircraft dynam-
ics. Modelica allows for the crisp definition of events, special points in time, where
the system behavior switches between different regimes. So called if equations al-
low to switch between sets of equations according to the system state, in our case,
the active set of constraints prescribed by the AIDL threads. In order to perform
proper and physically meaningful transitions between the continuous phases, Mod-
elica provides so called when equations which allow activating a behavior (a set of
equations) at a specific event. The events are triggered by Modelica operators like
change() or edge() which observe changes in variables. This can be used to
transfer the system state properly from the regime before the event to the appropri-
ate regime after. In the context of AIDL, this implies catching the trigger events,
processing the AIDL threads, manipulating the constraint ’state’, and finally intro-
ducing jumps in the physical states of the aircraft performance model if required.

In order to illustrate aspects of the Modelica implementation, a simplified frag-
ment of the thread logic is presented in Listing 1. One can see the intuitive defini-
tion of trigger events in the when-clause where continuous and discrete variables
are mixed. The aircraft variables are available in the Thread class’ connector com-
ponent apmVariables, and the constraint state is exposed through the connector
constraints. The AIDL thread is made up of a list of Instruction objects,
each containing the current command type, trigger type, and potentially required
numerical values such as throttle position. Please note the Thread class uses a spe-
cial type of equations placed in a section called algorithm where the equation
order is relevant.

Listing 1 Modelica fragment of the AIDL Thread class

model Thread "AIDL Thread class"
parameter Instruction instructions[:] "AIDL sequence";
Integer ip(start=1) "AIDL instruction pointer";
CommandType currentCommand;
TriggerType currentTrigger;
Real triggerTime(start=-1) "Simulation time next trigger event";
Boolean tl "Throttle law active";
APMVariables apmVariables "Physical aircraft state";
...

algorithm

// Testing for a set of Trigger Events; time:=simulation time
when ({

Generating Trajectories described by AIDL using Modelica 13

currentTrigger==TriggerType.T_elap and time>triggerTime,
change(currentTrigger==TriggerType.H and apmVariables.h<

triggerHeight),
...}) then

// fetch next AIDL command
ip := ip+1;
currentInstruction := instructions[ip];
currentCommand := currentInstruction.cmd;
currentTrigger := currentInstruction.trg;
...

// process next command
if currentCommand==CommandType.TL then

tl := true;
constraints.value := currentCommand.argument;

elseif ...
...

end if;

// process next trigger
if currentTrigger==TriggerType.T_elap then

triggerTime := currentTrigger.argument;
elseif ...

...
end if;

end when;
end Thread;

The Modelica approach pays off when it comes to the translation of the model
equations presented in Section 3 into the hybrid DAE. At the very heart of all com-
ponent based modeling formalisms like Modelica lies the problem of handling high
index DAEs arising from multiple constraint equations. High index DAEs either
require very special numerical integration schemes with often poor performance or
can be transformed by a method called index reduction to a less demanding formula-
tion [1]. Modelica tools rely upon methods proposed in [7, 9] which enable solving
the index reduction problem including state selection and consistent initialization
for a wide class of DAE systems automatically. The Modelica language itself also
provides powerful language elements to alleviate consistent initialization of DAE
systems [10]. In our case, the AIDL results in a vast amount of possible constraint
configurations, which may even involve the permutation of state and control vari-
ables. The general index reduction method liberates the modeler from the tedious
task of preparing separate DAE or ODE systems for each constraint situation.

Numerical solution of the continuous aircraft dynamics, Eqs. 1-7, imposes no
special problems, but manual implementation of the hybrid behavior of AIDL se-
quences can be challenging. Since events as well as constraints are modeled in our
approach symbolically by means of Modelica equations, the Modelica compiler is
able to generate code for the time integration of the differential equations which
takes special care of the events. This event handling embedded in the model equa-

14 Michael Hardt and Robert Höpler

tions can then be tightly coupled to standard integration schemes to allow for robust
and fast simulation [4].

Similar to other object-oriented languages such as Java and C++, Modelica in-
corporates programming concepts such as classes, instantiation, and encapsulation.
Equations implementing the behavior of a specific model component, e.g. the air-
craft performance model, are placed into a distinct model class. An incarnation or
instance of a class is called component in Modelica. Variables and states residing in a
component are accessed through specific model ports called connectors. A complete
simulation model is formed by a collection of components, hence, realizations of all
the associated model equations. Physical interaction or exchange of information be-
tween model components is defined by a relation between two model connectors
called connection.

Though Modelica is a purely textual language, it allows for convenient component-
based graphical modeling through its object-oriented nature and a special language
element called annotation. This is inert to the modeled dynamics but amenable to
graphical modeling and rendering within an authoring tool.

The visualization of the Modelica trajectory framework used in the example
model in the next chapter is shown in Figure 3. One can identify several entities: The
earthModel provides global environmental conditions such as air pressure and
wind. The aircraftPerformanceModel implements the equations of motion
and the possible constraint equations required by the AIDL Eq. 1-7. This block ex-
poses the physical state of the aircraft, essentially a unique selection of variables
listed in Table 4, to the thread components via a connector depicted by an orange
circle. The green triangle represents a connector through which the APM expects a
set of control signals containing the AIDL constraint pattern and the associated val-
ues of the control variables. Our example requires three thread components which
implement the AIDL thread logic and triggers. These blocks expect an AIDL thread
sequence and output a constraint pattern finally shared with the APM to switch the
constraint equations accordingly. The sync block merges and coordinates the sev-
eral flows of constraint patterns stemming from the longitudinal and lateral AIDL
threads. Lines in the graphical layer represent connections between connector ob-
jects.

5 Results from Simulation Experiments

A numerical experiment is defined to demonstrate the AIDL switching behavior.
The Modelica solution is compared with existing proprietary, specially designed
solution software with identical results. The experiment consists of an initial hor-
izontal flight for a small UAS, followed by a deceleration phase, then a descent
phase, and finally another horizontal flight.

The AIDL threads shown in Table 10 were used as parameters for the thread
components in the Modelica model. Note that the thread definitions are categorized
as {Longitudinal 1, Longitudinal 2, Lateral} rather than {Propulsive, Longitudinal,

Generating Trajectories described by AIDL using Modelica 15

Fig. 3 Graphical representation of the Modelica version of the trajectory computation framework
for the simulation experiments presented in Section 5.

Lateral} as indicated in Table 7. This is because a priori the nature of the non-
Lateral motion threads cannot be determined from observing a single instruction.
In particular, instructions from the Speed profile (see Table 6) may belong to either
the Propulsive or Longitudinal threads depending upon the instructions in the other
non-Lateral thread as shown in Table 7. Once both non-Lateral threads are observed,
however, the assignment to the {Propulsive, Longitudinal} threads is straightfor-
ward.

Longitudinal thread 2 was augmented by a TERM command to stop simulation
after the last trigger. Initial values used for the experiment were m = 20kg, λ =
−4.3680◦, ϕ = 40.907051◦, vCAS = 30m/s, h = 2000m, χTAS = 350◦, µTAS = 0◦.
The solver used was DASSL with a tolerance of 10−4. CPU time used for resolving
the problem on a standard PC are almost neglegible at 100 milliseconds.

Table 10 AIDL Threads for Experiment 1

Longitudinal 1 Thread
Inst SpecVar TargVal TrigCode TrigVar TrigVal TrigID

HA h 2000 [m] 14 vCAS 22 [mps] —

HS vCAS 22 [mps] 0 ID end —

Longitudinal 2 Thread
Inst SpecVar TargVal TrigCode TrigVar TrigVal TrigID

HS vCAS 30 [mps] 2 t 25 [s] —

TL ffiT 0.1 [-] 20 h 1100 [m] —

HA h 1100 [m] 2 t 15 [s] end

Lateral Thread
Inst SpecVar TargVal TrigCode TrigVar TrigVal TrigID

HBA µTAS 0 [deg] 0 ID end —

16 Michael Hardt and Robert Höpler

No special care had to be taken about the initialization of state variables and
dependent variables for our simulation experiment, neither at simulation start nor
after the trigger events. Selection of states and consistent initialization is done by
the Modelica tool using [9]. All model equations are available in symbolic form, so
the Modelica tool is able to either treat nonlinear systems on an equation level, e.g.
by a method called tearing, or is able to introduce suitable solvers for the nonlinear
systems to solve when it comes to start or restart the simulation.

Table 11 AIDL Realization

Phase # 1 2 3 4
LON1 HA HA HS HS
LON2 HS TL TL HA
LAT HBA HBA HBA HBA
DAE Index 3 3 2 3

The resulting instruction combinations within the four phases of the experiment
are shown in Table 11. The DAE index for each phase is also given according to
Table 9. Figure 4 shows the current AIDL command and trigger types valid at each
time. These are obviously discrete variables potentially changing their values only
at the trigger events in the manner of a typical state machine.

0 100 200

HA

HSCAS

HA

HSCAS

TL

TERM

HBA

threadLong1.cmd

threadLong2.cmd

threadLat.cmd

0 100 200

NEVER

H

Telap

VCAS

NEVER

H

Telap

NEVER

threadLong1.trg

threadLong2.trg

threadLat.trg

Fig. 4 AIDL command state (left picture) and AIDL trigger state (right picture) in Modelica model
over simulation time for Experiment 1. Please note: the y-axis shows a discrete state and does not
represent a numerical value.

The concurrently calculated aircraft variables are shown in Fig. 5. One can see
that some states such as vCAS and aircraft mass result in trajectories with non-
differentiable corners and some variables like γTAS even show jumps. The same holds
for the current forces acting on the aircraft shown in Fig. 6.

Those interested in the Modelica code for this experiment may contact the au-
thors.

Generating Trajectories described by AIDL using Modelica 17

0 100 200
20

25

30

35

[m
/s
]

amm.vCAS amm.vTAS

0 100 200
1000

1500

2000

2500
[m
]

amm.h

0 100 200
40.90

40.92

40.94

40.96

[d
eg
]

amm.phi

0 100 200
300

350

400

[d
eg
]

amm.chiTAS

0 100 200
-20

-10

0

10

[d
eg
]

amm.gammaTAS

0 100 200
19.8

19.9

20.0

20.1

[k
g]

amm.m

Fig. 5 Aircraft specifier variables over simulation time for Experiment 1.

0 100 200
0

20

40

60

[N
]

amm.T amm.D

0 100 200
190

192

194

196

198

[N
]

amm.L

Fig. 6 Dynamic equation variables acting on aircraft over simulation time for Experiment 1.

6 Conclusion

A concise, generic Modelica implementation of the AIDL trajectory computation
framework is presented. This implementation is powerful as it is perfectly adapted to
handle the complexities implicit in the resolution of the differential-algebraic equa-
tions resulting from the AIDL trajectory definition framework. The simplicity of
this scheme is considered to be an enabler, in contrast to previous solution schemes,
which may facilitate the use of AIDL as a UTM solution. The much improved ease
of AIDL calculation lends itself to a more automated, cooperative, interoperable,
criterion-based, efficient, scalable, and sustainable UTM alternative. Furthermore,
Modelica tools permit the automatic generation of embeddable code for ease of de-
ployment.

References

1. K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value Problems
in Differential-Algebraic Equations. North-Holland, New York, Amsterdam, London, 1989.

2. Mauricio Castillo-Effen, Liling Ren, Han Yu, and Corey A. Ippolito. Off-nominal trajectory
computation applied to unmanned aircraft system traffic management. In 2017 IEEE/AIAA
36th Digital Avionics Systems Conference (DASC), St. Petersburg, FL, USA, 2017. IEEE.

18 Michael Hardt and Robert Höpler

3. FAA. Nextgen, concept of operations v1.0, unmanned aircraft system (uas) traffic manage-
ment (utm), 2018. https://utm.arc.nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf.

4. Peter Fritzson. Object-oriented Modeling and Simulation with Modelica 3.3. Wiley, 2 edition,
2015.

5. Javier López-Leonés. The Aircraft Intent Description Language. PhD thesis, University of
Glasgow, 2007.

6. Javier López-Leonés, Miguel A. Vilaplana, Eduardo Gallo, Francisco A. Navarro, and Carlos
Querejeta. Towards a formal language for the common description of aircraft intent. In
IEEE/AIAA Digital Avionics Systems Conference. IEEE, 2007.

7. Sven Erik Mattsson and Gustaf Söderlind. Index reduction in differential-algebraic systems
using dummy derivatives. SIAM Journal of scientific and statistical computing, 14:677–692,
1993.

8. Modelica Association. Modelica Language Specification - Version 3.3, 2012.
9. C.C. Pantelides. The consistent initialization of differential-algebraic systems. SIAM Journal

of scientific and statistical computing, 9:213–231, 1988.
10. Michael Sielemann, Francesco Casella, Martin Otter, Christoph Clauss, Jonas Eborn,

Sven Erik Mattsson, and Hans Olsson. Robust initialization of differential-algebraic equa-
tions using homotopy. In Proceedings of the 8th Modelica Conference, Dresden, Germany,
2011.

11. Miguel A. Vilaplana, Eduardo Gallo, and Francisco A. Navarro. The aircraft intent description
language: A key enabler for air-ground synchronization in trajectory-based operations. In
Digital Avionics Systems Conference, Brussels, Belgium, 2005. IEEE.

