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Abstract This study is concerned with the development of a robust open-loop
optimal control (ROC) framework that distributes different generalized polyno-
mial chaos (gPC) sub-problems from the non-intrusive stochastic collocation (SC)
method. This distributed open-loop optimal control (DOC) approach yields a num-
ber of smaller open-loop optimal control problems (OCPs) that can be solved inde-
pendently of each other and are only connected by a small number of connection
variables. These connection variables are introduced based on the specifics of the
used cost and constraint functions and describe the coupling in the gPC expansion
when e.g., calculating the variance. Overall, the definition as a DOC problem yields
a faster and more reliable way to solve the ROC problem than by a full, connected
problem. Here, the study shows the applicability of the proposed method in an air
race example with the optimization of mean values and variances.

1 Introduction

With increasing computational power, the calculation of robust optimal trajectories
became a popular research topic [2, 6, 8, 9]. Especially the introduction of gPC by
XIU AND KARNIADAKIS in 2002 [14] is widely applied as it provides an efficient
method to introduce parametric uncertainties in OCPs. Overall, the gPC method
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is a spectral representation of uncertainties. This means that the approach utilizes
an expansion with deterministic expansion coefficients and orthogonal polynomials
that depend on the uncertainties [13].

This study concentrates on the development of a bi-level approach using a DOC
technique: In this context, gPC was already applied within a bi-level, non-distributed
open-loop optimal control (OC) framework for the optimization of noise minimal
approach trajectories with wind uncertainties [10]. Therefore, it is suited for the
algorithm developed within this research project.

DOC is a powerful tool in OC: It defines a methodology to split up a large OCP
into smaller OCPs that are coupled by connection variables. These smaller problems
are then easier to solve because they can be solved independently of each other. On
the downside, the problems must be solved multiple times, instead of only once
as for the large scale problem. Still, it is generally easier regarding both time and
complexity, to solve multiple smaller, parallelized problems instead of a single large
problem (which might not even be possible due to e.g., the size). Thus, this study
applies the methods of DOC to ROC with gPC. These problems can be distributed
fairly well due to the nature of the gPC expansion.

An overview on already developed gPC DOC frameworks, mainly for model pre-
dictive control (MPC) and with intrusive changes to the dynamic model by gPC, can
be found in [3, 7]: At first, study [3] shows a combination of DOC in the context of
MPC with gPC. The authors apply there method to linear systems and use an intru-
sive gPC formulation to rewrite the deterministic equations into a stochastic form.
Their goal is to solve a linear probabilistic constraint. It should be noted that this
is opposite to the formulation of this study that conserves the deterministic base-
line formulation and thus does not require and alteration of the original problem.
Study [7] introduces a similar idea in the context of stochastic DOC for non-convex
problems. The authors again use the intrusive reformulation of the gPC method to
change the problem formulation from the deterministic to the stochastic domain.

To show the implementation of a DOC framework with gPC, this study is or-
ganized as follows: In Section 2 an overview on different used methodologies to
implement the DOC framework is given. The optimization model is introduced in
Section 3. The results for different DOC reference scenarios are given in Section 4.
Within Section 5 conclusive remarks on the implementation aspects of the proposed
algorithm and an outlook are stated.

2 Methodology

This section gives an overview on the methods used within this study as well as some
characteristics of their implementation: Therefore, Subsection 2.1 introduces the
general OCP formulation. Then, Subsection 2.2 gives a review of the gPC method
and how to calculate the statistics for the DOC formulation and Subsection 2.3 con-
cludes with an overview of the DOC methodology developed in this study.
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2.1 Direct Open-Loop Optimal Control

We define the OCP (it should be reminded here that we consider open-loop OC here)
for this study as follows [1]:

min
x,u,p, t f

J
(
x,u,p, t f

)
s.t. f(x,u,p;θ) = ẋ,

c(x,u,p)≤ 0,
ψ(x,u,p) = 0

(1)

The OCP is depending on the states of the system x∈Rnx×1, the controls u∈Rnu×1,
optimizable time-invariant parameters p ∈ Rnp×1, and the final time t f . Further on,
these optimization variables are also combined in the vector z =

[
t f ,pT ,xT ,uT

]T .
The scalar valued cost function J is expressed as a BOLZA COST FUNCTIONAL as
follows:

J
(
x,u,p, t f

)
= e
(
x
(
t f
)
,u
(
t f
)
,p, t f

)
+
∫ t f

0
L(x,u,p)dt (2)

The objective is to minimize the cost functional consisting of the Mayer term e
that depicts the cost index at the final point in time and the Lagrange term L that
describes the cost index over the optimization time interval.

The OCP in Eq. 1 is subject to the following constraints: First of all, the state
dynamics ẋ ensuring a feasible trajectory must be fulfilled. Additionally, inequal-
ity path and point constraints c as well equality path and point constraints ψ are
required (e.g., boundary conditions or load factor limits).

Furthermore, compared to the normally used OCP formulation, we introduce
within this study that the state dynamics are subject to uncertainties θ for which we
know the probability density function (pdf). These uncertainties are symbolized by
θ in the state dynamics equations.

Generally, the OCP stated in Eq. 1 is solved using direct methods available from
the OC toolbox FALCON.M [11]. Direct methods first of discretize the problem
into a nonlinear programming problem (NLP) and afterwards optimize this dis-
cretized problem [1]. Here, a transcription by trapezoidal collocation is used [1].
To solve the discretized OCP, we use the gradient-based NLP solver IPOPT [12].

2.2 Generalized Polynomial Chaos

This section gives an overview of the gPC method: At first, Subsection 2.2.1 intro-
duces the basics of the gPC method. Subsection 2.2.2 then describes the SC method
that is used to calculate the expansion coefficients. The general calculation of the
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statistical moments is presented in Subsection 2.2.3, while Subsection 2.2.4 extends
these results to the DOC framework of this study.

2.2.1 Theoretical Background

The gPC method was originally developed by XIU AND KARNIADAKIS in 2002
[14]. Essentially, it is a spectral representation of the uncertain response of a system
as follows [14]:

y(z;θ)≈
M−1

∑
m=0

ŷ(m) (z)Φ
(m) (θ) , M−1 =

(
N +D

N

)
(3)

In Eq. 3, the output variables, whose response should be approximated by the gPC
expansion, are given by y. The dimension of the gPC expansion is given by M,
the number of uncertain parameters by N, and the highest order of the expansion
polynomials by D. The multivariate expansion polynomials are depicted by Φ and
are generally orthogonal polynomials. For a scalar polynomial φ the orthogonality
relation is defined as follows [14]:∫

Ω
φ (m) (θ)φ (n) (θ)ρ (θ)dθ =

(
h(m)

)2
δmn =


(

h(m)
)2

if m = n

0 else
, m,n ∈ N0 (4)

The scalar orthogonal polynomial is symbolized by φ in Eq. 4, while Ω is the ran-
dom space, i.e., the support of the pdf ρ (θ). The KRONECKER DELTA is given by
δmn and h(m) is a normalization factor. For convenience, we assume that all orthogo-
nal polynomials in this article are appropriately normalized. It should be noted that
the relation between orthogonal polynomials, pdf, and its support is summarized in
Table 1.

Now, the expansion coefficients, ŷ(m), in Eq. 3 are obtained by the following
integral equation [13]:

ŷ(m) (z) =
∫

Ω

y(z;θ)Φ
(m) (θ)ρ (θ)dθ (5)

For getting the gPC expansion in Eq. 3, the efficient calculation of the integral in
Eq. 5 is important. Within this study, we use the SC approach as introduced in
Subsection 2.2.2.

2.2.2 Stochastic Collocation

The SC approach is a Gaussian quadrature approach to get an approximation of the
integral for the expansion coefficients in Eq. 5. This is a particularly viable choice as
Gaussian quadrature schemes are designed with respect to the pdf of the orthogonal
polynomials as introduced in Table 1 [2, 13].
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Table 1: Continuous Probability Distribution - Orthogonal Polynomial Connection
For Standard gPC according to Wiener-Askey scheme [13].

Probability Distribution Probability Density Function Support Symbol Orthogonal Polynomial

Gaussian/Normal 1√
2π

exp
(

θ 2

2

)
]−∞,∞[ N (µ,σ) Hermite

Gamma θ α exp(−θ)
Γ (α+1) [0,∞[ γ (µ,σ ,α) Laguerre

Beta Γ (α+β+2)
2α+β+1Γ (α+1)Γ (β+1)

(1−θ)α (1+θ)β ]−1,1[ B (a,b,α,β ) Jacobi

Uniform 1
2 ]−1,1[ U (a,b) Legendre

Generally, the Gaussian quadrature approximates the integral in Eq. 5 using a
discrete expansion at a set of nodes θ

( j) with corresponding integration weights
α( j). This yields an approximation for Eq. 5 as follows [13]:

ŷ(m) (z) =
∫

Ω

y(z;θ)Φ
(m) (θ)ρ (θ)dθ ≈

Q

∑
j=1

y
(

z;θ
( j)
)

Φ
(m)
(

θ
( j)
)

α
( j) (6)

Here, Q is the number of chosen nodes that directly relates to the accuracy of the
approximation. The nodes θ

( j) are the zeros of the orthogonal polynomial of order
Q, while the weights α( j) are calculated based on the pdf applying an integration of
LAGRANGE polynomials as follows [13, p. 40]:

α
( j) =

∫
Ω

ρ (θ)
Q

∏
i=1
i 6= j

θ −θ (i)

θ ( j)−θ (i)
dθ (7)

Then, Eq. 6 reduces the problem of calculating the integral of the expansion coef-
ficients in Eq. 5 to a deterministic sampling problem at the nodes θ

( j) and a sub-
sequent evaluation of the discrete sum in Eq. 6. Take into account that for multiple
uncertainties the CURSE OF DIMENSIONALITY becomes a problem. To overcome
this issue sparse grid implementations can be used in engineering applications [13].

2.2.3 Statistical Moments

Statistical moments, such as mean or variance, can be calculated directly from the
gPC expansion in Eq. 3. The mean is given as follows [13]:

E [y(z;θ)]≈
∫

Ω

(
M−1

∑
m=0

ŷ(m) (z)Φ
(m) (θ)

)
ρ (θ)dθ = ŷ(0) (z) (8)

Take into account that Eq. 8 depicts that the mean is only depending on the first
expansion coefficient.

Then, the variance (squared standard deviation σ ) is calculated as follows [13]:
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σ
2 [y(z;θ)] = E

[
(y(z;θ)−E [y(z;θ)])2

]
≈

M−1

∑
m=1

[
ŷ(m) (z)

]2
(9)

Again, the variance in Eq. 9 only depends on the expansion coefficients.
Eqs. 8–9 are now a representation of the uncertain system using mean and vari-

ance and can therefore be used to approximate the robust system response. Higher
order statistical moments, such as skewness and kurtosis, can be calculated from the
expansion formula in Eq. 3 as well, but are not required in this study.

2.2.4 Statistics in Distributed Optimization

Evaluating the statistical moments from gPC in the DOC framework requires rewrit-
ing Eqs. 8–9. This is due to the fact that the DOC framework relies on a distributed
evaluation of the physical trajectories at the SC nodes, θ ( j), while the statistical
moments are evaluated using the gPC expansion coefficients. To achieve this pro-
jection, the SC expansion formula in Eq. 6 must be inserted directly in the statistical
moment calculation of Eqs. 8–9.

At first, the mean value in Eq. 8 can be rewritten as follows:

E [y(z;θ)]≈ ŷ(0) (z)≈
Q

∑
j=1

y
(

z;θ
( j)
)

Φ
(0)
(

θ
( j)
)

α
( j) (10)

It should be noted that Eq. 10 is already the desired distributed solution of the mean
value even without introducing connection variables. This is due to the fact that the
summands in Eq. 10 can be solved for each SC node individually. Thus, a DOC
setup that e.g., only tries to optimize a mean value is indeed perfectly decoupled
and can be solved independently in one step, i.e., without a connection problem.

Now, the variance in Eq. 9 can be written in distributed form starting from:

σ
2 [y(z;θ)]≈

M−1

∑
m=1

[
ŷ(m) (z)

]2
≈

M−1

∑
m=1

[
Q

∑
j=1

y
(

z;θ
( j)
)

Φ
(m)
(

θ
( j)
)

α
( j)

]2

(11)

To get a distributed representation of the variance, we need the binomial formula[
Q

∑
j=1

x( j)

]2

=
Q

∑
j=1

[
x( j)
]2

+∑
j 6=i

x(i)x( j). (12)

We can then rewrite the squared sum in Eq. 11 based on Eq. 12 as follows:

σ
2 [y(z;θ)]≈

M−1

∑
m=1

Q

∑
j=1

[
y
(

z;θ
( j)
)]2 [

Φ
(m)
(

θ
( j)
)]2 [

α
( j)
]2

+
M−1

∑
m=1

[
∑
j 6=i

y
(

z;θ
( j)
)

Φ
(m)
(

θ
( j)
)

α
( j)y
(

z;θ
(i)
)

Φ
(m)
(

θ
(i)
)

α
(i)

] (13)
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Now, we can split Eq. 13 in parts that are only dependent on the expansion coeffi-
cients and the SC nodes respectively as follows:

σ
2 [y(z;θ)]≈

Q

∑
j=1

[
y
(

z;θ
( j)
)]2 [

α
( j)
]2 M−1

∑
m=1

[
Φ

(m)
(

θ
( j)
)]2

+∑
j 6=i

y
(

z;θ
( j)
)

y
(

z;θ
(i)
)

︸ ︷︷ ︸
ν(i)

α
( j)

α
(i)

M−1

∑
m=1

Φ
(m)
(

θ
( j)
)

Φ
(m)
(

θ
(i)
)

(14)

Take into account that the first line in Eq. 14 is again decoupled from other SC nodes
and can be handled distributed (as we know the orthogonal polynomials). On the
other hand, the second line in Eq. 14 does not exhibit this preferable behavior: Here,
a connection between the current distributed problem j and all other distributed
problems i is imminent. Thus, when optimizing the variance the introduction of
connection variables in the DOC framework is required.

It should be noted in the context of Eq. 14 that the connection problem still re-
mains easy to solve. To show this we look at the second line of Eq. 14 and introduce
the connection variables ν(i) as follows:

σ̃
2 [y(z;θ)] = ∑

j 6=i

[
y
(

z;θ
( j)
)

ν
(i)

α
( j)

α
(i)

M−1

∑
m=1

Φ
(m)
(

θ
( j)
)

Φ
(m)
(

θ
(i)
)]

(15)

Now, the connection variables for each distributed gPC problem j that are summed
in Eq. 15, must fulfill the following condition enforced within the connection prob-
lem:

ξ
( j) = ν

( j)−y
(

z;θ
( j)
)

!
= 0 (16)

Here, y
(

z;θ ( j)
)

are known values in the connection problem after solving the DOC
problems. Thus, Eq. 16 can be solved by the NEWTON method.

Then, the derivative of Eq. 16, required for the NEWTON method, is given as
follows:

dξ ( j)

dν( j)
= I−

dy
(

z;θ ( j)
)

dν( j)︸ ︷︷ ︸
0

(17)

It should be noted that the second addend equates to zero as a direct consequence
of Eqs. 14 and 15: Here, it is imminent that the connection variables only introduce
a cross-coupling, while no direct coupling is introduced. The sum with the connec-
tion variables is here only evaluated for elements that are not equal to the current
distributed gPC problem j. Thus, a differentiation with respect to the same exponent
j yields zero.

The structure in Eq. 17 is beneficial as we do not need to provide any sensitivi-
ties to the upper level connection problem and also justifies the seemingly complex
rewriting of the original Eq. 11 to Eq. 14. Finally, the update of Eq. 16 using a
NEWTON step with the derivative in Eq. 17 is given as follows:
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ν
( j)
new = ν

( j)− τ

[
ν
( j)−y

(
z;θ

( j)
)]

(18)

Here, τ ∈]0;1] is a step size (line search) parameter in order to find the best possible
update to get as close to the current problem solution as possible.

2.3 Distributed Optimal Control

In a DOC framework, the OCP in Eq. 1 is distributed, i.e., divided into multiple
smaller OCPs that can be solved independently. This independence must normally
be secured by introducing connection variables that enforce constraints or mitigate
an interaction between now distributed problems to ensure that still the original
problem is solved (as shown in Eqs. 14 and 15). The overall strategy is also referred
to as primal decomposition. The connection problem is solved separately from the
distributed OCP in an upper level connection problem.

Overall, the j− th DOC problem, i.e., the OCP solved at the gPC node θ ( j), can
be stated according to Eq. 1 as follows:

min
x( j),u( j),p( j)

J( j)
(

x( j),u( j),p( j)
)
+ J̃

( j)
(

ν
(i)
)

s.t. f( j)
(

x( j),u( j),p( j);θ
( j)
)
+ f̃

( j)(
ν
(i)
)
= ẋ( j),

c( j)
(

x( j),u( j),p( j)
)
+ c̃( j)

(
ν
(i)
)
≤ 0,

ψ
( j)
(

x( j),u( j),p( j)
)
+ ψ̃

( j)
(

ν
(i)
)
= 0

(19)

Here, ν(i) symbolizes the connection variables, while .̃ over a function depicts func-
tions with dependence on this connection variables. Take into account that this vec-
tor is no optimization variable in the distributed, single OCP, but is adapted accord-
ing to a connection problem (e.g., Eq. 18) to ensure that the original solution of the
connected problem is achieved. Further note that the connection variables, as shown
in e.g., Eq. 15, depend on the other distributed problems (i 6= j). Thus, they are
distinguished by another superscript. Overall, the connection variables thus merely
provides an additional gradient shaping in the DOC context for the OCPs.

It should be noted that the distributed problem must still fulfill the original OCP
formulation. Thus, e.g., the cost function must fulfill the following equality:

∑
j

[
J( j)
(

x( j),u( j),p( j)
)
+ J̃

( j)
(

ν
(i)
)]
≡ J (20)

The same also applies for the constraints in Eq. 19. Take into account that Eq. 20
also directly implies a strategy to update the connection variables in the connection
problem.
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As an example for the definition of the DOC with statistical moments, we look
at the following cost functional:

J = E [y(z;θ)]+ k ·σ2 [y(z;θ)] (21)

Here, k is a scaling factor and y the variable whose mean and variance should be
optimized (here in the scalar context for simplicity).

Now, we can use Eqs. 10 and 14 to rewrite Eq. 21 as follows:

J =
Q

∑
j=1

y
(

z;θ
( j)
)

Φ
(0)
(

θ
( j)
)

α
( j)+ k

{
Q

∑
j=1

[
y
(

z;θ
( j)
)]2 [

α
( j)
]2 M−1

∑
m=1

[
Φ

(m)
(

θ
( j)
)]2

+∑
j 6=i

y
(

z;θ
( j)
)

ν
(i)︸︷︷︸

y(z;θ (i))

α
( j)

α
(i)

M−1

∑
m=1

Φ
(m)
(

θ
( j)
)

Φ
(m)
(

θ
(i)
)


(22)

Here, Eq. 22 directly provides us with the rule to split up the cost functional in Eq.
20 as the first line is only dependent on the j− th OCP, while the second line has
the additional influence of the connection variables:

J( j) = y
(

z;θ
( j)
)

Φ
(0)
(

θ
( j)
)

α
( j)+ k ·

[
y
(

z;θ
( j)
)]2 [

α
( j)
]2 M−1

∑
m=1

[
Φ

(m)
(

θ
( j)
)]2

J̃
( j)
(

ν
(i)
)
= k · y

(
z;θ

( j)
)

ν
(i)

α
( j)

α
(i)

M−1

∑
m=1

Φ
(m)
(

θ
( j)
)

Φ
(m)
(

θ
(i)
) (23)

The general structure of a DOC formulation in the context of OC is also introduced
in Figure 1. It is evident that the upper level gives the connection variables to the
lower level. The lower level then provides the updated trajectories that the upper
level uses to improve on the connection variables. The procedure stops when the
magnitude in the update of the connection variables becomes small.

Furthermore, the algorithm that solves the DOC, and is used within this study,
can also be schematically written as given in Algorithm 1.

Algorithm 1 Implemented DOC framework algorithm with gPC.

Initialize connection variables ν(i)

while ||Eq. 16||> ε
(
e.g., ε = 10−5

)
do

for all θ
( j) do

Solve OCP in Eq. 19 (e.g., using [11]) at each θ
( j) in distributed manner, i.e., independent

of each other, with current connection variables ν(i)

end for
Update the connection variables ν(i) using Eq. 18 (and a line search if required)

end while
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Upper Level
”Connection Problem”

Calculate and update connec-
tion variables using Newton step

Lower Level
”Distributed Optimal Control”

Contains Q gradient-based, par-
allelizable, distributed NLP OCP

• Calculate new optimal trajectory for each of the Q
distributed problems

• Distributed problem solved independently on gPC
nodes

Initial
Variables

Optimal
Variables

ν(1)

...
ν(Q)

z(1)
...

z(Q)

Fig. 1: General structure of the distributed optimal control problem formulation
with connection problem in upper level and the standard distributed optimal control
problems in lower level.

3 Dynamic Model and Optimization Problem

This section summarizes the equations of motion (EoM) (Section 3.1) and the OCP
setup (Section 3.2) for the air race optimization model used in the case studies in
Section 4.

3.1 Aircraft Dynamic Equations

The following subsection summarizes the EoM for a rigid-body aerobatic aircraft.
This aircraft model has already been introduced and successfully used in other OC
related applications [4, 5].

The EoMs for the x, y, and z position in a local coordinate system is defined as
follows: ẋ

ẏ
ż

=

V · cos(χ) · cos(γ)
V · sin(χ) · cos(γ)
−V · sin(γ)

 (24)

The translational EoMs are described using the kinematic velocity V , the kinematic
course angle χ , and the kinematic climb angle γ . From NEWTONs second law, the
translational dynamics are propagated as follows:

V̇ =
1
m
·FT,x, χ̇ =

1
m ·V · cos(γ)

·FT,y, γ̇ =− 1
m ·V

·FT,z (25)

Here, FT symbolizes the total force (i.e., thrust, aerodynamics, and gravitation) in
each axis direction.
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The attitude EoMs are described by the kinematic angle of attack α , the kine-
matic bank angle µ , and the kinematic sideslip angle β :

µ̇ = ω
KB
x − tan(β )

(
ω

KB
y cos(µ)+ω

KB
z sin(µ)

)
(26a)

α̇ =
1

cos(β )
(
ω

KB
y cos(µ)+ω

KB
z sin(µ)

)
(26b)

β̇ = ω
KB
y sin(µ)−ω

KB
z cos(µ) (26c)

In Eqs. 26a–26c, the components of
(
ωKB

)
K denote the kinematic rotational veloc-

ities between the Kinematic frame K and the Body-fixed frame B, denoted in the
Kinematic frame K:

(
ω

KB)
K =

ωKB
x

ωKB
y

ωKB
z


K

=−

−χ̇ · sin(γ)
γ̇

χ̇ · cos(γ)


K

+MKB ·

p
q
r


B

(27)

The last set of equations for the rigid body dynamics are the rotational EoMs ob-
tained from momentum conservation. They describe the evolution of the kinematic
roll rate p, pitch rate q, and yaw rate r. Using the total moments (MT )B, the inertia
tensor I with respect to the center of gravity and the Body-fixed frame, and the kine-
matic angular body rate vector

(
ωOB

)
B between the Orientation (NED) frame (O)

and the Body-fixed frame (B) the angular accelerations are computed as follows:(
ω̇

OB)
B =

[
ṗ q̇ ṙ

]T
= I−1 [(MT )B−

(
ω

OB)
B× I ·

(
ω

OB)
B

]
(28)

The thrust lever dynamics are modeled as a first order lag:

δ̇T =
1

TEngine
(δT,c−δT ) (29)

The thrust lever directly provides the thrust force T for the EoM using the following
relation:

FT,x = T = δT ·Tre f (30)

3.2 Optimal Control Problem Setup

The OCP consists of two phases that model three race gate positions to be passed
in wings-level position (µ = 0) and for a defined direction χ . The following initial
boundary conditions (IBC) for the states [x,y,z,χ,γ,µ] define these in the beginning
of each phase (the other states are free):

Phase IBClb IBCub

1 [0,0,0,0,0,0] [0,0,0,0,0,0]
2 [103,0,0,0,0,0] [103,0,0,0,0,0]
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Furthermore, the final boundary conditions (FBC) for the same states in the last
phase are defined as:

Phase FBClb FBCub

2 [103,140,0,π,0,0] [103,140,0,π,0,0]

The final times of the three phases with the respective lower and upper bounds t lb
f , t

ub
f

and scaling tS
f are defined as:

Phase t f ,i t lb
f ,i tub

f ,i tS
f ,i

i = 1 10s 0s 40s 100

i = 2 20s 0s 40s 100

The states with the respective lower and upper bounds xlb,xub, and scalings xS are
as follows:

State Name xlb xub xS

x x-Position −5 ·103 5 ·103 10−2

y y-Position −5 ·103 5 ·103 10−2

z z-Position −5 ·103 0 ·101 10−2

χ Course angle −3π 3π 100

γ Climb angle −π π 100

µ Bank angle −π π 100

V Velocity 25 100 10−1

α Angle of attack −0.1π 0.1π 100

β Angle of sideslip −0.1π 0.1π 100

p Roll rate −2π 2π 100

q Pitch rate −π π 100

r Yaw rate −π π 100

δT Thrust lever 0 1 100

The controls with the respective lower and upper bounds ulb,uub, and scalings uS

are as follows:
Control Name ulb uub uS

ξ Aileron deflection − π

8
π

7 100

η Elevator deflection − π

7
π

7 100

ζ Rudder deflection − π

6
π

6 100

δT,c Thrust lever position 0 1 100

Furthermore, the load factor (nT,z)B in the zB-direction of the Body-fixed frame (B)
is constrained for all three phases:

−10≤ (nT,z)B =
(FT,z)B

mg
≤ 2 (31)

The normalized state and control discretization for each of the two phases is 0.005
and we solve the OCPs as well as the connection problem by IPOPT to a tolerance
of 10−5. Finally, the uncertain system response is approximated using a 3rd order
gPC expansion.
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4 Distributed Optimal Control Test Cases

This section covers the test cases of the DOC framework: At first, a minimization
of the mean final time is described in Subsection 4.1. Then, Subsection 4.2 looks at
the additional optimization of the load factor variance that yields a more complex
DOC problem including connection variables.

4.1 Minimization of Mean Final Time

This test case features a fairly simple DOC problem in order to show the capabilities
of the approach as well as to verify the results. For this optimization, we consider
the reference thrust in Eq. 30 to be normally distributed as follows:

Tre f ∈N (µ = 5500N,σ = 100N) (32)

This uncertainty in the reference thrust is a consequence of different used engines as
well as environmental conditions (e.g., air density). The order of the gPC expansion
is three (i.e., M = D = 3,N = 1), as this is sufficient to approximate the mean value.

Overall, we look at the minimization of the mean final time, for which the overall
cost function is as follows:

J = t̂ f
(0)
,2 ≈

Q=3

∑
j=1

t f
( j)
,2 Φ

(0)
(

θ
( j)
)

α
( j) (33)

From Eq. 33, the DOC cost function can be written down like in Eq. 23 (k = 0):

J( j) = t f
( j)
,2 Φ

(0)
(

θ
( j)
)

α
( j), j = 1,2,3 (34)

Take into account that we do not need any connection variables as also already stated
in Subsection 2.2.4. This consequently means that we converge in one iteration of
the DOC problem. Furthermore, this implies that the added cost terms in Eq. 19
equate to zero:

J̃
( j)

= 0, j = 1,2,3 (35)

The results of the DOC are visualized in Figure 2: Here, a 3D comparison of the tra-
jectory from DOC (solid blue) and from the reference gPC solution of the OCP, i.e.,
a non-robust uncertain representation (dashed red). This representation is calculated
by solving standard time-minimal OCPs at the nodes θ

( j) and afterwards creating
the gPC expansion from it. Overall, the results are matching fairly good and both
methods are converging to the same solution.

It should be noted that small errors still occur as also depicted in Figure 3. These
errors are based on the fact that we are not solving the same numerical problem
although the analytical problem is the same. This is a consequence of the fact that
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we are scaling the cost function differently. In the reference case the cost function is
just the numeric value while we scale this numeric value by the expansion weights
in the DOC case (Eq. 10). This also shows in the slightly different cost function for
DOC case of Jdistr = 16.6623642599 compared to the value of the reference case
of Jre f = 16.6519073935. This shows that the slight variations in the scaling do
have an influence in the cost function and which local minima is found (i.e., which
result is optimal compared to the solver tolerances). In the end, this also leads to the
variations in the trajectory that can be seen in the results of Figure 3. Nonetheless,
this does not nullify the results of the proposed method as a good and correct scaling
is a general issue for OC and always must be chosen carefully.
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Fig. 2: Comparison of optimal trajectories for distributed optimal control (solid
blue) and reference, non-robust (dashed red) gPC optimization.

4.2 Minimization of Load Factor Variance

Within this section, we additionally look at the incorporation of a Lagrange cost on
the load factor variance in Eq. 33. This cost implements the pilot’s desire to always
fly with the same “feeling”. This means that the pilot wants to fly the trajectory
similar even with an uncertainty as this gives him the best, i.e., the well-known,
feeling for the aircraft and his flight. The uncertainty remains as defined in Eq. 32.
The expansion order also remains three (i.e., M = D = 3,N = 1).

Here, the DOC compared to Subsection 4.1 is changing as we need an intercon-
nection between the different phases to calculate the variance. The distributed cost
related to the load factor variance is defined as follows:



A Distributed Robust Optimal Control Framework Based on Polynomial Chaos 15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

|E
[x

]-
E[

x r
ef

]|
in

[m
]

Mean Absolute Position Error (Ref gPC)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

|E
[y

]-
E[

y r
ef

]|
in

[m
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

τ in [s]

|E
[z

]-
E[

z r
ef

]|
in

[m
]

Fig. 3: Absolute mean position error over time between distributed optimal control
and reference, non-robust gPC optimization.

σ
2
[(

n( j)
z

)
B

]
=
[(

n( j)
z

)
B

]2 [
α
( j)
]2 M−1

∑
m=1

[
Φ

(m)
(

θ
( j)
)]2

+∑
j 6=i

(n( j)
z

)
B

(
n(i)z

)
B︸ ︷︷ ︸

ν(i)

α
( j)

α
(i)

M−1

∑
m=1

Φ
(m)
(

θ
( j)
)

Φ
(m)
(

θ
(i)
)

(36)

It should be noted that the connection variables ν(i) =
(

n(i)z

)
B

are introduced in
Eq. 36 to connect the load factor histories of the other SC phases to be able to
calculate the variance. The introduced connection variables are updated in a bi-level
coordination problem such that the original problem formulation is solved (Figure
1).

Looking at the DOC problem statement in Eq. 19 and the general distributed cost
in Eq. 23, the following cost function influences can be identified:

J( j) =
[(

n( j)
z

)
B

]2 [
α
( j)
]2 M−1

∑
m=1

[
Φ

(m)
(

θ
( j)
)]2

, j = 1,2,3

J̃
( j)

=∑
j 6=i

[(
n( j)

z

)
B

ν
(i)

α
( j)

α
(i)

M−1

∑
m=1

Φ
(m)
(

θ
( j)
)

Φ
(m)
(

θ
(i)
)]

, j = 1,2,3

(37)

Thus, we have indeed found a distributed description of the original coupled prob-
lem. It should be noted that the cost in Eq. 37 is combined with the already dis-
tributed cost in Eq. 33 to form the overall cost function (similar to Eq. 22).

Generally, the connection variables in Eq. 36 must fulfill the condition as follows:
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ν
( j)−

(
n( j)

z

)
B
≡ 0, j = 1,2,3 (38)

Using a NEWTON step to fulfill the condition in the coordination problem iteratively,
as proposed in Eq. 18, we get the following update equation:

ν
( j)
new = ν

( j)− τ

[
ν
( j)−

(
n( j)

z

)
B

]
, j = 1,2,3 (39)

In this study, the line search parameter is chosen according to the criterion that
minimizes the standard deviation difference of the updated and the current problem.

Take into account that the simple update law in Eq. 39 requires no sensitivity or
inversion of any matrix. This makes the update fairly easy and fast to calculate. It
should also be noted that this simple update law form is based on the transformation
done to the original definition of the variance in Subsection 2.2.4. Originally, this
rewriting resulted in a generally more complex formula, but a formula that is easier
to handle in the coordination problem as seen here (e.g., when no sensitivities are
readily available).

Now, we look at the results for the robust distributed optimization: At first, Figure
4 depicts a comparison of the DOC results of this section (in the following: solid
blue line) and the DOC reference results from Section 4.1 (in the following: dashed
red line). Once more, the reference results are obtained as a non-robust solution by
solving standard time-minimal OCPs at the nodes θ

( j) and afterwards creating the
gPC expansion from it. It is imminent that the DOC solution takes a larger turn
radius within the steep turn. This consequently yields a minimization of the mean
load factor as seen in Figure 5. It is obvious that the load factor is not as aggressive
and specifically not as often on its boundary condition.

In combination with the also plotted standard deviation that is also significantly
reduced over the integration interval, we achieve an increased robustness. The over-
all area is reduced from the value of ≈ 4.38 for the reference case, to a value of
≈ 2.96 in the robust case, which equates to roughly 33%. This increased robustness
is achieved at the cost of a reduced optimality: Specifically, the optimal trajectory
time is increased from ≈ 16.66s in the reference case to ≈ 18.28s for the robust
case. This is an increase of approximately 10%.

Overall, the results show that a robustness increase can be achieved by the pro-
posed DOC framework. This robustness increase comes at the cost of a less optimal
solution. The user can choose the weighting between optimality and robustness by
appropriately scaling the two terms. This yields to the Pareto problem introduced in
Eq. 22 that is subject to further investigations.

In order to better understand how the DOC problem achieves a more robust tra-
jectory description, Figures 6 and 7 show the mean values and standard deviations
of the three longitudinal plane states height, climb angle, and velocity respectively.
The height state shows the behavior that is already known from Figure 4: The ro-
bust DOC result does climb more gradually to an overall smaller height. This is also
seen from the climb angle results. The climb is more gradual and does not reach the
same maximal value as in the reference case. Another interesting maneuver that the
aircraft takes in the first flight phase is to reduce height in order to climb before the
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turn. This yields a reduction of the velocity before the turn is entered, which again
reduces the load factor.

The standard deviations in Figure 7 depict that these values are smaller for the
robust DOC case in the height and the climb angle from a global perspective. Con-
trary, the velocity has a very large standard deviation, especially in the first phase,
with the already mentioned descent-climb maneuver. This is a consequence of the
uncertainty in the maximum thrust that influences how the maneuver must be exe-
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cuted. Overall, the standard deviations of the robust DOC case show a more gradual
behavior than in the reference case.
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5 Conclusions

This study presented an efficient method for ROC that relies on a distributed so-
lution of the gPC problem. Therefore, a specifically tailored DOC framework was
developed that could efficiently handle the resulting gPC connection problem effi-
ciently. Here, the connection variables are part of the statistical moments, e.g., the
variance, that can only be calculated with the knowledge of the optimal solution of
all distributed problems. With the formulation as introduced in this study the con-
nection problem becomes a simple zero search that does not require the knowledge
of sensitivities. This makes the solution fairly easy and efficient.

One important additional finding was that the distributed problem reduces to a
single solution of the unconnected problems in case only mean values are optimized
or constrained. This makes the framework very efficient for these kinds of cases.
For these cases the framework showed a very good match with the reference results.

On the other hand the optimization of higher order moments (e.g., variance) re-
quires the introduction of additional connection variables. But with a reformulation
of the gPC formulas of e.g., the variance using binomial theorems, an easy form of
the connection problem can be achieved.

Future research should be concerned with adaptive and efficient line search pro-
cedure for the connection problem as it has shown itself that always taking a full
step is not suitable in order to reach a good update and converge fast.

Furthermore, chance constraints can be treated with the proposed robust DOC
framework. Here, the chance constraint must be distributed as well and the results
should give a probability for the trajectory to be within a specified constraint toler-
ance.

Finally, an important topic in the context of ROC in general and robust DOC in
specific is the already mentioned Pareto problem that is encountered. This problem
is natural and based on the trade-off of optimality and robustness. Here, fast methods
for Pareto optimization in the context of the DOC framework should be developed
in order to find the Pareto optimum efficient, fast, and reliable.
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aircraft optimal control based on numerical nonlinear dynamic inversion. In:
25th Mediterranean Conference on Control and Automation (MED), pp 141–
146, doi: 10.1109/MED.2017.7984108

[5] Fisch F (2011) Development of a Framework for the Solution of High-
Fidelity Trajectory Optimization Problems and Bilevel Optimal Con-
trol Problems. Dissertation, Technische Universität München, München,
URL http://nbn-resolving.de/urn/resolver.pl?urn:nbn:
de:bvb:91-diss-20110221-1001868-1-4

[6] Harmon FG (2017) Hybrid solution of nonlinear stochastic optimal control
problems using Legendre Pseudospectral and generalized Polynomial Chaos
algorithms. In: 2017 American Control Conference (ACC), IEEE, Piscataway,
NJ, pp 2642–2647, doi: 10.23919/ACC.2017.7963351

[7] Jiang Y, Nimmegeers P, Telen D, van Impe J, Houska B (2017) A Distributed
Optimization Algorithm for Stochastic Optimal Control. IFAC-PapersOnLine
50(1):11,263–11,268, doi: 10.1016/j.ifacol.2017.08.1618

[8] Li X, Nair PB, Zhang Z, Gao L, Gao C (2014) Aircraft Robust Trajec-
tory Optimization Using Nonintrusive Polynomial Chaos. Journal of Aircraft
51(5):1592–1603, doi: 10.2514/1.C032474

[9] Matsuno Y, Tsuchiya T (2014) Stochastic 4D trajectory optimization for air-
craft conflict resolution. In: IEEE Aerospace Conference, 2014, IEEE, Piscat-
away, NJ, pp 1–10, doi: 10.1109/AERO.2014.6836275

[10] Richter M, Holzapfel F (2013) Robust Noise Optimal Approach Trajectories.
AIAA Guidance, Navigation, and Control (GNC) Conference, Boston doi: 10.
2514/6.2013-4556
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